High-frequency modulation and bandwidth limitations of GaInNAs double-quantum-well lasers -: art. no. 051103

被引:17
作者
Wei, YQ [1 ]
Gustavsson, JS [1 ]
Haglund, Å [1 ]
Modh, P [1 ]
Sadeghi, M [1 ]
Wang, SM [1 ]
Larsson, A [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Photon Lab, SE-41296 Gothenburg, Sweden
关键词
D O I
10.1063/1.2170430
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have studied the modulation bandwidth of high-speed GaInNAs double-quantum-well lasers emitting at 1.28-1.30 mu m. A 400 mu m long ridge waveguide laser exhibits a small signal modulation bandwidth of 14 GHz. The intrinsic damping limited modulation bandwidth is as high as 25 GHz (K=0.35 ns), and the actual modulation bandwidth is limited by thermal effects under continuous operation. The saturation of the resonance frequency at 10 GHz was found to be the result of a thermal reduction of the differential gain and a rapid increase of the threshold current when the temperature exceeds 80 degrees C. (c) 2006 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 13 条
[1]   GAIN NONLINEARITY AND ITS TEMPERATURE-DEPENDENCE IN BULK AND QUANTUM-WELL QUATERNARY LASERS [J].
BERNUSSI, AA ;
TEMKIN, H ;
COBLENTZ, DL ;
LOGAN, RA .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1995, 7 (04) :348-350
[2]   Static and dynamic characteristics of 1.29-μm GaInNAs ridge-waveguide laser diodes [J].
Borchert, B ;
Egorov, AY ;
Illek, S ;
Riechert, H .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (06) :597-599
[3]   Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications [J].
Dagens, B ;
Martinez, A ;
Make, D ;
Le Gouezigou, W ;
Provost, JG ;
Sallet, V ;
Merghem, K ;
Harmand, JC ;
Ramdane, A ;
Thedrez, B .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (05) :971-973
[4]   1.3μm double quantum well GalnNAs distributed feedback laser diode with 13.8 GHz small signal modulation bandwidth [J].
Gollub, D ;
Moses, S ;
Forchel, A .
ELECTRONICS LETTERS, 2004, 40 (19) :1181-1182
[5]   Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs [J].
Kjebon, O ;
Schatz, R ;
Lourdudoss, S ;
Nilsson, S ;
Stalnacke, B .
HIGH-SPEED SEMICONDUCTOR LASER SOURCES, 1996, 2684 :138-152
[6]   Progress in research into mixed group-V nitride alloys [J].
Kondow, M ;
Kitatani, T .
IEE PROCEEDINGS-OPTOELECTRONICS, 2003, 150 (01) :9-11
[7]   GaInNAs: A novel material for long-wavelength semiconductor lasers [J].
Kondow, M ;
Kitatani, T ;
Nakatsuka, S ;
Larson, MC ;
Nakahara, K ;
Yazawa, Y ;
Okai, M ;
Uomi, K .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (03) :719-730
[8]   9.7 GHz small-signal bandwidth of three-quantum well GalnNAs/GaAs laser diodes operating at 1.35 μm [J].
Martinez, A ;
Provost, JG ;
Dagens, B ;
Sallet, V ;
Jahan, D ;
Merghem, K ;
Ferlazzo, L ;
Landreau, J ;
Le Gouezigou, O ;
Harmand, JC ;
Ramdane, A .
ELECTRONICS LETTERS, 2004, 40 (07) :425-427
[9]   HIGH-SPEED QUANTUM-WELL LASERS AND CARRIER TRANSPORT EFFECTS [J].
NAGARAJAN, R ;
ISHIKAWA, M ;
FUKUSHIMA, T ;
GEELS, RS ;
BOWERS, JE .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (10) :1990-2008
[10]  
NAGARAJAN R, 1999, SEMICONDUCTOR LASERS, V1