Synthesis of few-to-monolayer graphene on rutile titanium dioxide

被引:18
作者
Bansal, Tanesh [1 ]
Durcan, Christopher A. [1 ]
Jain, Nikhil [1 ]
Jacobs-Gedrim, Robin B. [1 ]
Xu, Yang [2 ]
Yu, Bin [1 ]
机构
[1] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
[2] Zhejiang Univ, Inst Microelect & Optoelect, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; HIGH-QUALITY; NANOSHEETS; GRAPHITE; OXIDE;
D O I
10.1016/j.carbon.2012.12.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate a chemical-vapor-deposition (CVD)-based approach for the direct synthesis of graphene on insulator with high-dielectric-constant (high-x). Rutile titanium dioxide (TiO2), an insulator with reported k value of 80-125, is selected as the growth-initiating layer for graphene. A two-step CVD process is shown to grow graphene directly on TiO2 crystals or exfoliated ultrathin TiO2 nanosheets without using any metal catalyst. Various material characterization techniques confirm the growth of few-to-monolayer of graphene. Annealing of the growth substrate at 1100 degrees C under atmospheric pressure, prior to the low-pressure CVD process, is needed for activating nucleation sites in subsequent graphene synthesis. Electrical behavior of a field-effect transistor fabricated on the graphene/TiO2 heterostructure shows p-type doping in the CVD-synthesized graphene. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 20 条
[1]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[2]   Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates [J].
Chen, Jianyi ;
Wen, Yugeng ;
Guo, Yunlong ;
Wu, Bin ;
Huang, Liping ;
Xue, Yunzhou ;
Geng, Dechao ;
Wang, Dong ;
Yu, Gui ;
Liu, Yunqi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) :17548-17551
[3]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[4]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[5]   Probing the Nature of Defects in Graphene by Raman Spectroscopy [J].
Eckmann, Axel ;
Felten, Alexandre ;
Mishchenko, Artem ;
Britnell, Liam ;
Krupke, Ralph ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (08) :3925-3930
[6]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy [J].
Jerng, Sahng-Kyoon ;
Yu, Dong Seong ;
Lee, Jae Hong ;
Kim, Christine ;
Yoon, Seokhyun ;
Chun, Seung-Hyun .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-6
[9]   Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors [J].
Konar, Aniruddha ;
Fang, Tian ;
Jena, Debdeep .
PHYSICAL REVIEW B, 2010, 82 (11)
[10]   Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils [J].
Li, Xuesong ;
Cai, Weiwei ;
An, Jinho ;
Kim, Seyoung ;
Nah, Junghyo ;
Yang, Dongxing ;
Piner, Richard ;
Velamakanni, Aruna ;
Jung, Inhwa ;
Tutuc, Emanuel ;
Banerjee, Sanjay K. ;
Colombo, Luigi ;
Ruoff, Rodney S. .
SCIENCE, 2009, 324 (5932) :1312-1314