A study on the electrical properties of ZnO based transparent TFTs

被引:7
作者
Barquinha, P.
Fortunato, E.
Goncalves, A.
Pimentel, A.
Marques, A.
Pereira, L.
Martins, R.
机构
[1] Univ Nova Lisboa, Fac Sci & Technol, CENIMAT, Dept Mat Sci, P-2829516 Caparica, Portugal
[2] UNIOVA, CEMOP, P-2829516 Caparica, Portugal
来源
ADVANCED MATERIALS FORUM III, PTS 1 AND 2 | 2006年 / 514-516卷
关键词
transparent TFT; ZnO; channel mobility;
D O I
10.4028/www.scientific.net/MSF.514-516.68
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The purpose of this work is to present in-depth electrical characterization on transparent TFTs, using zinc oxide produced at room temperature as the semiconductor material. Some of the studied aspects were the relation between the output conductance in the post-pinch-off regime and width-to-length ratios, the gate leakage current, the semiconductor/insulator interface traps density and its relation with threshold voltage. The main point of the analysis was focused on channel mobility. Values extracted using different methodologies, like effective, saturation and average mobility, are presented and discussed regarding their significance and validity. The evolution of the different types of mobility with the applied gate voltage was investigated and the obtained results are somehow in disagreement with the typical behavior found on classical silicon based MOSFETs, which is mainly attributed to the completely different structures of the semiconductor materials used in the two situations: while in MOSFETS we have monocrystalline silicon, our transparent TFTs use poly/nanocrystalline zinc oxide with grain sizes of about 10 nm.
引用
收藏
页码:68 / 72
页数:5
相关论文
共 16 条
[1]   Photodetecting properties of ZnO-based thin-film transistors [J].
Bae, HS ;
Yoon, MH ;
Kim, JH ;
Im, S .
APPLIED PHYSICS LETTERS, 2003, 83 (25) :5313-5315
[2]   Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering [J].
Carcia, PF ;
McLean, RS ;
Reilly, MH ;
Nunes, G .
APPLIED PHYSICS LETTERS, 2003, 82 (07) :1117-1119
[3]   Fully transparent ZnO thin-film transistor produced at room temperature [J].
Fortunato, EMC ;
Barquinha, PMC ;
Pimentel, ACMBG ;
Gonçalves, AMF ;
Marques, AJS ;
Pereira, LMN ;
Martins, RFP .
ADVANCED MATERIALS, 2005, 17 (05) :590-+
[4]   Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature [J].
Fortunato, EMC ;
Barquinha, PMC ;
Pimentel, ACMBG ;
Gonçalves, AMF ;
Marques, AJS ;
Martins, RFP ;
Pereira, LMN .
APPLIED PHYSICS LETTERS, 2004, 85 (13) :2541-2543
[5]  
HOFFMAN R, 2002, THESIS OREGON STATE
[6]   ZnO-based transparent thin-film transistors [J].
Hoffman, RL ;
Norris, BJ ;
Wager, JF .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :733-735
[7]   ZnO-channel thin-film transistors: Channel mobility [J].
Hoffman, RL .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5813-5819
[8]   Influence of the amorphous silicon thickness on top gate thin-film transistor electrical performances [J].
Martin, S ;
Chiang, CS ;
Nahm, JY ;
Li, T ;
Kanicki, J ;
Ugai, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (2A) :530-537
[9]   Transparent thin film transistors using ZnO as an active channel layer and their electrical properties [J].
Masuda, S ;
Kitamura, K ;
Okumura, Y ;
Miyatake, S ;
Tabata, H ;
Kawai, T .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (03) :1624-1630
[10]   High mobility thin film transistors with transparent ZnO channels [J].
Nishii, J ;
Hossain, FM ;
Takagi, S ;
Aita, T ;
Saikusa, K ;
Ohmaki, Y ;
Ohkubo, I ;
Kishimoto, S ;
Ohtomo, A ;
Fukumura, T ;
Matsukura, F ;
Ohno, Y ;
Koinuma, H ;
Ohno, H ;
Kawasaki, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2003, 42 (4A) :L347-L349