Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition

被引:49
作者
Sokolov, Anatoliy N. [1 ,2 ]
Yap, Fung Ling [1 ,3 ]
Liu, Nan [1 ]
Kim, Kwanpyo [1 ]
Ci, Lijie [4 ]
Johnson, Olasupo B. [1 ]
Wang, Huiliang [5 ]
Vosgueritchian, Michael [1 ]
Koh, Ai Leen [6 ]
Chen, Jihua [7 ]
Park, Jinseong [4 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Dow Chem Co USA, Midland, MI 48640 USA
[3] ASTAR, IMRE, Singapore 17602, Singapore
[4] Samsung Cheil Ind Inc, Corp Res Inst, San Jose Lab, San Jose, CA 95131 USA
[5] Stanford Univ, Stanford, CA 94305 USA
[6] Stanford Univ, Stanford Nano Shared Facil, Stanford, CA 94305 USA
[7] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
美国国家科学基金会;
关键词
GRAPHENE NANORIBBONS; AMORPHOUS-CARBON; RAMAN-SPECTROSCOPY; FABRICATION; FILMS; CONDUCTIVITY; ADSORPTION; ALIGNMENT; XPS;
D O I
10.1038/ncomms3402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene, laterally confined within narrow ribbons, exhibits a bandgap and is envisioned as a next-generation material for high-performance electronics. To take advantage of this phenomenon, there is a critical need to develop methodologies that result in graphene ribbons <10 nm in width. Here we report the use of metal salts infused within stretched DNA as catalysts to grow nanoscopic graphitic nanoribbons. The nanoribbons are termed graphitic as they have been determined to consist of regions of sp(2) and sp(3) character. The nanoscopic graphitic nanoribbons are micrometres in length, <10 nm in width, and take on the shape of the DNA template. The DNA strand is converted to a graphitic nanoribbon by utilizing chemical vapour deposition conditions. Depending on the growth conditions, metallic or semiconducting graphitic nanoribbons are formed. Improvements in the growth method have potential to lead to bottom-up synthesis of pristine single-layer graphene nanoribbons.
引用
收藏
页数:8
相关论文
共 47 条
[31]   Quantitative characterization of DNA films by X-ray photoelectron spectroscopy [J].
Petrovykh, DY ;
Kimura-Suda, H ;
Tarlov, MJ ;
Whitman, LJ .
LANGMUIR, 2004, 20 (02) :429-440
[32]   Metallization of DNA [J].
Richter, J .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 16 (02) :157-173
[33]   Folding DNA to create nanoscale shapes and patterns [J].
Rothemund, PWK .
NATURE, 2006, 440 (7082) :297-302
[34]   Growth of Graphene from Food, Insects, and Waste [J].
Ruan, Gedeng ;
Sun, Zhengzong ;
Peng, Zhiwei ;
Tour, James M. .
ACS NANO, 2011, 5 (09) :7601-7607
[35]   Raman Spectroscopy of Lithographically Patterned Graphene Nanoribbons [J].
Ryu, Sunmin ;
Maultzsch, Janina ;
Han, Melinda Y. ;
Kim, Philip ;
Brus, Louis E. .
ACS NANO, 2011, 5 (05) :4123-4130
[36]   Semiconducting Two-Dimensional Graphene Nanoconstriction Arrays [J].
Safron, Nathaniel S. ;
Brewer, Adam S. ;
Arnold, Michael S. .
SMALL, 2011, 7 (04) :492-498
[37]   Scalable templated growth of graphene nanoribbons on SiC [J].
Sprinkle, M. ;
Ruan, M. ;
Hu, Y. ;
Hankinson, J. ;
Rubio-Roy, M. ;
Zhang, B. ;
Wu, X. ;
Berger, C. ;
de Heer, W. A. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :727-731
[38]   Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers [J].
Su, Panpan ;
Jiang, Liang ;
Zhao, Jiao ;
Yan, Jingwang ;
Li, Can ;
Yang, Qihua .
CHEMICAL COMMUNICATIONS, 2012, 48 (70) :8769-8771
[39]   Growth of graphene from solid carbon sources [J].
Sun, Zhengzong ;
Yan, Zheng ;
Yao, Jun ;
Beitler, Elvira ;
Zhu, Yu ;
Tour, James M. .
NATURE, 2010, 468 (7323) :549-552
[40]   Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport [J].
Turchanin, Andrey ;
Weber, Dirk ;
Bueenfeld, Matthias ;
Kisielowski, Christian ;
Fistul, Mikhail V. ;
Efetov, Konstantin B. ;
Weimann, Thomas ;
Stosch, Rainer ;
Mayer, Joachim ;
Goelzhaeuser, Armin .
ACS NANO, 2011, 5 (05) :3896-3904