Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires

被引:150
作者
Chen, Cheng-Ying [1 ,2 ,3 ]
Retamal, Jose Ramon Duran [1 ,2 ]
Wu, I-Wen [1 ,2 ]
Lien, Der-Hsien [3 ]
Chen, Ming-Wei [1 ,2 ]
Ding, Yong [3 ]
Chueh, Yu-Lun [4 ]
Wu, Chih-I [1 ,2 ]
He, Jr-Hau [1 ,2 ]
机构
[1] Natl Taiwan Univ, Inst Photon & Optoelect, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
关键词
ZnO; metal oxide; nanowire; surface band bending; Schottky junction; oxygen vacancy; ZNO NANOWIRE; N-TYPE; SCHOTTKY CONTACTS; ELECTRICAL-PROPERTIES; SNO2; NANOWIRES; WORK FUNCTION; PHOTODETECTORS; SEMICONDUCTOR; ENHANCEMENT; SENSORS;
D O I
10.1021/nn205097e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We in situ probed the surface band bending (SBB) by ultraviolet photoelectron spectroscopy (UPS) in conjunction with field-effect transistor measurements on the incompletely depleted ZnO nanowires (NWs). The diameter range of the NWs is ca. 150-350 nm. Several surface treatments (i.e., heat treatments and Au nanoparticle (NP) decoration) were conducted to assess the impact of the oxygen adsorbates on the SBB. A 100 degrees C heat treatment leads to the decrease of the SBB to 0.74 +/- 0.15 eV with 29.9 +/- 3.0 nm width, which is attributed to the removal of most adsorbed oxygen molecules from the ZnO NW surfaces. The SBB of the oxygen-adsorbed ZnO NWs is measured to be 1.53 +/- 0.15 eV with 43.2 +/- 2.0 nm width. The attachment of Au NPs to the NW surface causes unusually high SBB (2.34 +/- 0.15 eV with the wide width of 53.3 +/- 1.6 nm) by creating open-circuit nano-Schottky junctions and catalytically enhancing the formation of the charge 02 adsorbates. These surface-related phenomena should be generic to all metal oxide nanostructures. Our study is greatly beneficial for the NW-based device design of sensor and optoelectronic applications via surface engineering.
引用
收藏
页码:9366 / 9372
页数:7
相关论文
共 45 条
[1]   Metal Schottky diodes on Zn-polar and O-polar bulk ZnO [J].
Allen, M. W. ;
Alkaisi, M. M. ;
Durbin, S. M. .
APPLIED PHYSICS LETTERS, 2006, 89 (10)
[2]   Influence of oxygen vacancies on Schottky contacts to ZnO [J].
Allen, M. W. ;
Durbin, S. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (12)
[3]  
Briggs D., 1983, Practical Surface Analysis: by Auger and X-ray Photoelectron Spectroscopy
[4]   Size-dependent photoconductivity in MBE-grown GaN-nanowires [J].
Calarco, R ;
Marso, M ;
Richter, T ;
Aykanat, AI ;
Meijers, R ;
Hart, AV ;
Stoica, T ;
Luth, H .
NANO LETTERS, 2005, 5 (05) :981-984
[5]   ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties [J].
Chen, C. Y. ;
Lin, C. A. ;
Chen, M. J. ;
Lin, G. R. ;
He, J. H. .
NANOTECHNOLOGY, 2009, 20 (18)
[6]   Enhanced Recovery Speed of Nanostructured ZnO Photodetectors Using Nanobelt Networks [J].
Chen, Cheng-Ying ;
Chen, Ming-Wei ;
Hsu, Chia-Yang ;
Lien, Der-Hsien ;
Chen, Miin-Jang ;
He, Jr-Hau .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (06) :1807-1811
[7]   Surface effects on optical and electrical properties of ZnO nanostructures [J].
Chen, Cheng-Ying ;
Chen, Ming-Wei ;
Ke, Jr-Jian ;
Lin, Chin-An ;
Retamal, Jose R. D. ;
He, Jr-Hau .
PURE AND APPLIED CHEMISTRY, 2010, 82 (11) :2055-2073
[8]   Electronic and chemical properties of cathode structures using 4,7-diphenyl-1,10-phenanthroline doped with rubidium carbonate as electron injection layers [J].
Chen, Mei-Hsin ;
Chen, Yu-Hung ;
Lin, Chang-Tin ;
Lee, Guan-Ru ;
Wu, Chih-I ;
Leem, Dong-Seok ;
Kim, Jang-Joo ;
Pi, Tun-Wen .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[9]   Photoconductive enhancement of single ZnO nanowire through localized Schottky effects [J].
Chen, Ming-Wei ;
Chen, Cheng-Ying ;
Lien, Der-Hsien ;
Ding, Yong ;
He, Jr-Hau .
OPTICS EXPRESS, 2010, 18 (14) :14836-14841
[10]   Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Zhou, Chongwu .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (06) :668-682