Self-dual fields harbored by a Kerr-Taub-bolt instanton

被引:9
作者
Aliev, AN
Saçlioglu, C
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
[2] Sabanci Univ, Fac Engn & Nat Sci, TR-81474 Istanbul, Turkey
关键词
D O I
10.1016/j.physletb.2005.11.028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a new exact solution for self-dual Abelian gauge fields living on the space of the Kerr-Taub-bolt instanton, which is a generalized example of asymptotically flat instantons with non-self-dual curvature, by constructing the corresponding square integrable harmonic form on this space. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:725 / 727
页数:3
相关论文
共 30 条
[21]   GENERALIZED SPIN STRUCTURES IN QUANTUM GRAVITY [J].
HAWKING, SW ;
POPE, CN .
PHYSICS LETTERS B, 1978, 73 (01) :42-44
[22]   GRAVITATIONAL INSTANTONS [J].
HAWKING, SW .
PHYSICS LETTERS A, 1977, 60 (02) :81-83
[23]   L2-Cohomology of hyperkahler quotients [J].
Hitchin, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :153-165
[24]   POLYGONS AND GRAVITONS [J].
HITCHIN, NJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 85 (MAY) :465-476
[25]   TAUB-NUT INSTANTON WITH AN HORIZON [J].
PAGE, DN .
PHYSICS LETTERS B, 1978, 78 (2-3) :249-251
[26]  
PAPAPETROU A, 1966, ANN I H POINCARE A, V4, P83
[27]   Solutions of the Einstein-Maxwell-Dirac and Seiberg-Witten monopole equations [J].
Saçlioglu, C .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (02) :485-495
[28]   DYON MONOPOLE BOUND-STATES, SELF-DUAL HARMONIC FORMS ON THE MULTI-MONOPOLE MODULI SPACE, AND SL(2,Z) INVARIANCE IN STRING THEORY [J].
SEN, A .
PHYSICS LETTERS B, 1994, 329 (2-3) :217-221
[29]   Yang-Mills solutions on Euclidean Schwarzschild space [J].
Tekin, B .
PHYSICAL REVIEW D, 2002, 65 (08) :840351-840355
[30]   RICCI CURVATURE OF A COMPACT KAHLER MANIFOLD AND COMPLEX MONGE-AMPERE EQUATION .1. [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) :339-411