Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels

被引:468
作者
Shin, Yoojin [2 ]
Han, Sewoon [2 ]
Jeon, Jessie S. [1 ]
Yamamoto, Kyoko [3 ]
Zervantonakis, Ioannis K. [1 ]
Sudo, Ryo [3 ]
Kamm, Roger D. [1 ,4 ]
Chung, Seok [2 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Korea Univ, Sch Mech Engn, Seoul, South Korea
[3] Keio Univ, Dept Syst Design Engn, Yokohama, Kanagawa 223, Japan
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
新加坡国家研究基金会; 日本科学技术振兴机构; 美国国家科学基金会;
关键词
IN-VITRO; 3D; PLATFORM; ANGIOGENESIS; TISSUE; MIGRATION; COCULTURE; MORPHOGENESIS; FABRICATION; MATRIX;
D O I
10.1038/nprot.2012.051
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This protocol describes a simple but robust microfluidic assay combining three-dimensional (3D) and two-dimensional (2D) cell culture. The microfluidic platform comprises hydrogel-incorporating chambers between surface-accessible microchannels. By using this platform, well-defined biochemical and biophysical stimuli can be applied to multiple cell types interacting over distances of <1 mm, thereby replicating many aspects of the in vivo microenvironment. Capabilities exist for time-dependent manipulation of flow and concentration gradients as well as high-resolution real-time imaging for observing spatial-temporal single-cell behavior, cell-cell communication, cell-matrix interactions and cell population dynamics. These heterotypic cell type assays can be used to study cell survival, proliferation, migration, morphogenesis and differentiation under controlled conditions. Applications include the study of previously unexplored cellular interactions, and they have already provided new insights into how biochemical and biophysical factors regulate interactions between populations of different cell types. It takes 3 d to fabricate the system and experiments can run for up to several weeks.
引用
收藏
页码:1247 / 1259
页数:13
相关论文
共 27 条
[1]   A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment [J].
Amadi, Ovid C. ;
Steinhauser, Matthew L. ;
Nishi, Yuichi ;
Chung, Seok ;
Kamm, Roger D. ;
McMahon, Andrew P. ;
Lee, Richard T. .
BIOMEDICAL MICRODEVICES, 2010, 12 (06) :1027-1041
[2]  
Chung S, 2010, ANN BIOMED ENG, V38, P1164, DOI 10.1007/s10439-010-9899-3
[3]   Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform [J].
Chung, Seok ;
Sudo, Ryo ;
Zervantonakis, Ioannis K. ;
Rimchala, Tharathorn ;
Kamm, Roger D. .
ADVANCED MATERIALS, 2009, 21 (47) :4863-+
[4]   Cell migration into scaffolds under co-culture conditions in a microfluidic platform [J].
Chung, Seok ;
Sudo, Ryo ;
Mack, Peter J. ;
Wan, Chen-Rei ;
Vickerman, Vernella ;
Kamm, Roger D. .
LAB ON A CHIP, 2009, 9 (02) :269-275
[5]   Cell interactions with three-dimensional matrices [J].
Cukierman, E ;
Pankov, R ;
Yamada, KM .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (05) :633-639
[6]   Investigation of bacterial chemotaxis in flow-based microfluidic devices [J].
Englert, Derek L. ;
Manson, Michael D. ;
Jayaraman, Arul .
NATURE PROTOCOLS, 2010, 5 (05) :864-872
[7]   Cell migration in 3D matrix [J].
Even-Ram, S ;
Yamada, KM .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (05) :524-532
[8]   New dimensions in tumor immunology: what does 3D culture reveal? [J].
Feder-Mengus, Chantal ;
Ghosh, Sourabh ;
Reschner, Anca ;
Martin, Ivan ;
Spagnoli, Giulio C. .
TRENDS IN MOLECULAR MEDICINE, 2008, 14 (08) :333-340
[9]   Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation [J].
Ghajar, Cyrus M. ;
Blevins, Katherine S. ;
Hughes, Christopher C. W. ;
George, Steven C. ;
Putnam, Andrew J. .
TISSUE ENGINEERING, 2006, 12 (10) :2875-2888
[10]   Capturing complex 3D tissue physiology in vitro [J].
Griffith, LG ;
Swartz, MA .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (03) :211-224