In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres

被引:738
作者
McDowell, Matthew T. [1 ]
Lee, Seok Woo [1 ]
Harris, Justin T. [2 ]
Korgel, Brian A. [2 ]
Wang, Chongmin [3 ]
Nix, William D. [1 ]
Cui, Yi [1 ,4 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Univ Texas Austin, Ctr Nano & Mol Sci & Technol, Texas Mat Inst, Dept Chem Engn, Austin, TX 78712 USA
[3] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
[4] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
Batteries; energy storage; phase transformations; silicon; in situ TEM; SIZE-DEPENDENT FRACTURE; HIGH-CAPACITY; CRYSTALLINE SILICON; ELECTROCHEMICAL LITHIATION; STRUCTURAL-CHANGES; BATTERY ANODES; INITIAL LITHIATION; ION BATTERIES; LITHIUM; ELECTRODES;
D O I
10.1021/nl3044508
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To utilize high-capacity Si anodes in next-generation Li-ion batteries, the physical and chemical transformations during the Li-Si reaction must be better understood. Here, in situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres; amorphous Si is an important anode material that has been less studied than crystalline Si. Unexpectedly, the experiments reveal that the first lithiation occurs via a two-phase mechanism, which is contrary to previous understanding and has important consequences for mechanical stress evolution during lithiation. On the basis of kinetics measurements, this behavior is suggested to be due to the rate-limiting effect of Si-Si bond breaking. In addition, the results show that amorphous Si has more favorable kinetics and fracture behavior when reacting with Li than does crystalline Si, making it advantageous to use in battery electrodes. Amorphous spheres up to 870 nm in diameter do not fracture upon lithiation; this is much larger than the 150 nm critical fracture diameter previously identified for crystalline Si spheres.
引用
收藏
页码:758 / 764
页数:7
相关论文
共 55 条
[21]   Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries [J].
Key, Baris ;
Bhattacharyya, Rangeet ;
Morcrette, Mathieu ;
Seznec, Vincent ;
Tarascon, Jean-Marie ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9239-9249
[22]   A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries [J].
Kim, Hyejung ;
Seo, Minho ;
Park, Mi-Hee ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (12) :2146-2149
[23]   A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries [J].
Kovalenko, Igor ;
Zdyrko, Bogdan ;
Magasinski, Alexandre ;
Hertzberg, Benjamin ;
Milicev, Zoran ;
Burtovyy, Ruslan ;
Luzinov, Igor ;
Yushin, Gleb .
SCIENCE, 2011, 334 (6052) :75-79
[24]   Quantitative Fracture Strength and Plasticity Measurements of Lithiated Silicon Nanowires by In Situ TEM Tensile Experiments [J].
Kushima, Akihiro ;
Huang, Jian Yu ;
Li, Ju .
ACS NANO, 2012, 6 (11) :9425-9432
[25]   Fracture of crystalline silicon nanopillars during electrochemical lithium insertion [J].
Lee, Seok Woo ;
McDowell, Matthew T. ;
Berla, Lucas A. ;
Nix, William D. ;
Cui, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (11) :4080-4085
[26]   Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation [J].
Lee, Seok Woo ;
McDowell, Matthew T. ;
Choi, Jang Wook ;
Cui, Yi .
NANO LETTERS, 2011, 11 (07) :3034-3039
[27]   Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes [J].
Li, Xiaolin ;
Meduri, Praveen ;
Chen, Xilin ;
Qi, Wen ;
Engelhard, Mark H. ;
Xu, Wu ;
Ding, Fei ;
Xiao, Jie ;
Wang, Wei ;
Wang, Chongmin ;
Zhang, Ji-Guang ;
Liu, Jun .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (22) :11014-11017
[28]   Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage [J].
Limthongkul, P ;
Jang, YI ;
Dudney, NJ ;
Chiang, YM .
ACTA MATERIALIA, 2003, 51 (04) :1103-1113
[29]   A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes [J].
Liu, Nian ;
Wu, Hui ;
McDowell, Matthew T. ;
Yao, Yan ;
Wang, Chongmin ;
Cui, Yi .
NANO LETTERS, 2012, 12 (06) :3315-3321
[30]  
Liu XH, 2012, NAT NANOTECHNOL, V7, P749, DOI [10.1038/NNANO.2012.170, 10.1038/nnano.2012.170]