Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers

被引:1422
作者
Chen, Shiyou [1 ,3 ]
Walsh, Aron [4 ]
Gong, Xin-Gao [3 ]
Wei, Su-Huai [2 ]
机构
[1] E China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Fudan Univ, Surface Phys Lab, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China
[4] Univ Bath, Dept Chem, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
defects; kesterite; Cu2ZnSnS4 (CZTS); Cu2ZnSnSe4 (CZTSe); first-principles calculations; THIN-FILMS; OPTICAL-PROPERTIES; GRAIN-BOUNDARY; NANOCRYSTALS; EFFICIENCY; SULFURIZATION; CU; FABRICATION; PRECURSOR; GROWTH;
D O I
10.1002/adma.201203146
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The kesterite-structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2. Four features are revealed and highlighted: (i) the strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p-type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge-compensated defect clusters such as [2CuZn+SnZn], [VCu+ZnCu] and [ZnSn+2ZnCu] and their contribution to non-stoichiometry; (iv) the electron-trapping effect of the abundant [2CuZn+SnZn] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) approximate to 0.8 and Zn/Sn approximate to 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.
引用
收藏
页码:1522 / 1539
页数:18
相关论文
共 137 条
[1]   Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values [J].
Ahn, SeJin ;
Jung, Sunghun ;
Gwak, Jihye ;
Cho, Ara ;
Shin, Keeshik ;
Yoon, Kyunghoon ;
Park, Doyoung ;
Cheong, Hyonsik ;
Yun, Jae Ho .
APPLIED PHYSICS LETTERS, 2010, 97 (02)
[2]   Cu2Zn1-xCdxSn(Se1-ySy)4 solid solutions as absorber materials for solar cells [J].
Altosaar, M. ;
Raudoja, J. ;
Timmo, K. ;
Danilson, M. ;
Grossberg, M. ;
Krustok, J. ;
Mellikov, E. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (01) :167-170
[3]   Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer [J].
Arai, Takeo ;
Tajima, Shin ;
Sato, Shunsuke ;
Uemura, Keiko ;
Morikawa, Takeshi ;
Kajino, Tsutomu .
CHEMICAL COMMUNICATIONS, 2011, 47 (47) :12664-12666
[4]   Preparationof Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors [J].
Araki, Hideaki ;
Kubo, Yuki ;
Jimbo, Kazuo ;
Maw, Win Shwe ;
Katagiri, Hironori ;
Yamazaki, Makoto ;
Oishi, Koichiro ;
Takeuchi, Akiko .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 5, 2009, 6 (05) :1266-1268
[5]   Effect of Cu/(Zn plus Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films [J].
Babu, Suresh G. ;
Kumar, Kishore Y. B. ;
Bhaskar, Uday P. ;
Vanjari, Sundara Raja .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) :221-226
[6]   Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency [J].
Bag, Santanu ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Zhu, Yu ;
Todorov, Teodor K. ;
Mitzi, David B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7060-7065
[7]   Defect physics of CuGaS2 [J].
Bailey, Christine L. ;
Liborio, Leandro ;
Mallia, Giuseppe ;
Tomic, Stanko ;
Harrison, Nicholas M. .
PHYSICAL REVIEW B, 2010, 81 (20)
[8]   Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell [J].
Barkhouse, D. Aaron R. ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Todorov, Teodor K. ;
Mitzi, David B. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :6-11
[9]   The electronic consequences of multivalent elements in inorganic solar absorbers: Multivalency of Sn in Cu2ZnSnS4 [J].
Biswas, Koushik ;
Lany, Stephan ;
Zunger, Alex .
APPLIED PHYSICS LETTERS, 2010, 96 (20)
[10]   Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods [J].
Botti, Silvana ;
Kammerlander, David ;
Marques, Miguel A. L. .
APPLIED PHYSICS LETTERS, 2011, 98 (24)