Pancyclicity of recursive circulant graphs

被引:37
作者
Araki, T [1 ]
Shibata, Y [1 ]
机构
[1] Gunma Univ, Dept Comp Sci, Gunma 3768515, Japan
关键词
interconnection networks; recursive circulant graphs; pancyclic property;
D O I
10.1016/S0020-0190(01)00226-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the existence of cycles of all lengths in the recursive circulant graphs, and we show a necessary and sufficient condition for the graph being pancyclic and bipancyclic. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:187 / 190
页数:4
相关论文
共 9 条
[1]   Hamiltonian decomposition of recursive circulant graphs [J].
Biss, DK .
DISCRETE MATHEMATICS, 2000, 214 (1-3) :89-99
[2]  
DAY K, 1993, IEEE T COMPUT, V12, P1002
[3]   Cycles in the cube-connected cycles graph [J].
Germa, A ;
Heydemann, MC ;
Sotteau, D .
DISCRETE APPLIED MATHEMATICS, 1998, 83 (1-3) :135-155
[4]  
Hwang SC, 2000, NETWORKS, V35, P161, DOI 10.1002/(SICI)1097-0037(200003)35:2<161::AID-NET7>3.0.CO
[5]  
2-Q
[6]   Embedding trees in recursive circulants [J].
Lim, HS ;
Park, JH ;
Chwa, KY .
DISCRETE APPLIED MATHEMATICS, 1996, 69 (1-2) :83-99
[7]   Disjoint Hamiltonian cycles in recursive circulant graphs [J].
Micheneau, C .
INFORMATION PROCESSING LETTERS, 1997, 61 (05) :259-264
[8]  
Park J. H., 1994, P INT S PAR ARCH ALG, P73, DOI DOI 10.1109/ISPAN.1994.367162
[9]   Recursive circulants and their embeddings among hypercubes [J].
Park, JH ;
Chwa, KY .
THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) :35-62