Geometric approach to chaos in the classical dynamics of Abelian lattice gauge theory

被引:8
作者
Casetti, L
Gatto, R
Pettini, M
机构
[1] Politecn Torino, Dipartimento Fis, Unita Ric, Ist Nazl Fis Mat, I-10129 Turin, Italy
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[3] Osserv Astrofis Arcetri, I-50125 Florence, Italy
[4] Ist Nazl Fis Nucl, Sezione Firenze, I-50125 Florence, Italy
[5] Ist Nazl Fis Nucl, Unita Firenze, I-50125 Florence, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 16期
关键词
D O I
10.1088/0305-4470/32/16/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Riemannian geometrization of dynamics is used to study chaoticity in the classical Hamiltonian dynamics of a U(1) lattice gauge theory. This approach allows one to obtain analytical estimates of the largest Lyapunov exponent in terms of time averages of geometric quantities. These estimates are compared with the results of numerical simulations, and turn out to be very close to the values extrapolated for very large lattice sizes even when the geometric quantities are computed using small lattices. The scaling of the Lyapunov exponent lambda with the energy density epsilon is found to be well described by the law lambda proportional to epsilon(2).
引用
收藏
页码:3055 / 3067
页数:13
相关论文
共 28 条
[1]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[2]   HAMILTONIAN-DYNAMICS OF YANG-MILLS FIELDS ON A LATTICE [J].
BIRO, TS ;
GONG, C ;
MULLER, B ;
TRAYANOV, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1994, 5 (01) :113-149
[3]   Damping rate and Lyapunov exponent of a Higgs field at high temperature [J].
Biro, TS ;
Thoma, MH .
PHYSICAL REVIEW D, 1996, 54 (05) :3465-3470
[4]   Geometry of dynamics, Lyapunov exponents, and phase transitions [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4361-4364
[5]   Hamiltonian dynamics of the two-dimensional lattice φ4 model [J].
Caiani, L ;
Casetti, L ;
Pettini, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15) :3357-3381
[6]   Geometry of dynamics and phase transitions in classical lattice φ4 theories [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, G ;
Pettini, M ;
Gatto, R .
PHYSICAL REVIEW E, 1998, 57 (04) :3886-3899
[7]  
CARMO M. P. D, 1992, Differential geometry of curves and surfaces
[8]   ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY [J].
CASETTI, L ;
PETTINI, M .
PHYSICAL REVIEW E, 1993, 48 (06) :4320-4332
[9]   EFFICIENT SYMPLECTIC ALGORITHMS FOR NUMERICAL SIMULATIONS OF HAMILTONIAN FLOWS [J].
CASETTI, L .
PHYSICA SCRIPTA, 1995, 51 (01) :29-34
[10]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984