One-Dimensional Electrical Contact to a Two-Dimensional Material

被引:2454
作者
Wang, L. [1 ,2 ]
Meric, I. [1 ]
Huang, P. Y. [3 ]
Gao, Q. [4 ]
Gao, Y. [2 ]
Tran, H. [5 ]
Taniguchi, T. [6 ]
Watanabe, K. [6 ]
Campos, L. M. [5 ]
Muller, D. A. [3 ]
Guo, J. [4 ]
Kim, P. [7 ]
Hone, J. [2 ]
Shepard, K. L. [1 ]
Dean, C. R. [1 ,2 ,8 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[3] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[4] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[5] Columbia Univ, Dept Chem, New York, NY 10027 USA
[6] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan
[7] Columbia Univ, Dept Phys, New York, NY 10027 USA
[8] CUNY City Coll, Dept Phys, New York, NY 10031 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
GRAPHENE DEVICES; DIRAC FERMIONS; METAL-GRAPHENE; HETEROSTRUCTURES; INTERFACES; RESISTANCE; GROWTH; LIMITS;
D O I
10.1126/science.1244358
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heterostructures based on layering of two-dimensional (2D) materials such as graphene and hexagonal boron nitride represent a new class of electronic devices. Realizing this potential, however, depends critically on the ability to make high-quality electrical contact. Here, we report a contact geometry in which we metalize only the 1D edge of a 2D graphene layer. In addition to outperforming conventional surface contacts, the edge-contact geometry allows a complete separation of the layer assembly and contact metallization processes. In graphene heterostructures, this enables high electronic performance, including low-temperature ballistic transport over distances longer than 15 micrometers, and room-temperature mobility comparable to the theoretical phonon-scattering limit. The edge-contact geometry provides new design possibilities for multilayered structures of complimentary 2D materials.
引用
收藏
页码:614 / 617
页数:4
相关论文
共 34 条
[1]   Antimonide-based compound semiconductors for electronic devices: A review [J].
Bennett, BR ;
Magno, R ;
Boos, JB ;
Kruppa, W ;
Ancona, MG .
SOLID-STATE ELECTRONICS, 2005, 49 (12) :1875-1895
[2]   Substrate Gating of Contact Resistance in Graphene Transistors [J].
Berdebes, Dionisis ;
Low, Tony ;
Sui, Yang ;
Appenzeller, Joerg ;
Lundstrom, Mark S. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (11) :3925-3932
[3]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[4]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[5]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[6]  
Cho K., 2010, MRS ONLINE P LIBR, V1259, pS14
[7]   Plasma treatments to improve metal contacts in graphene field effect transistor [J].
Choi, Min Sup ;
Lee, Seung Hwan ;
Yoo, Won Jong .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
[8]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[9]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[10]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726