Substrate Gating of Contact Resistance in Graphene Transistors

被引:45
作者
Berdebes, Dionisis [1 ]
Low, Tony [2 ]
Sui, Yang [3 ]
Appenzeller, Joerg [1 ]
Lundstrom, Mark S. [1 ]
机构
[1] Purdue Univ, Network Computat Nanotechnol, Birck Nanotechnol Ctr, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA
[2] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[3] GE Global Res Ctr, Niskayuna, NY 12309 USA
关键词
Contacts; graphene transistor; Landauer; nonequilibrium Green's function (NEGF); quantum transport; LIMITS; GAS;
D O I
10.1109/TED.2011.2163800
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metal contacts have been identified to be a key technological bottleneck for the realization of viable graphene electronics. Recently, it has been observed that for structures that possess both a top and a bottom gate, the electron-hole conductance asymmetry can be modulated by the bottom gate. In this paper, we explain this observation by postulating the presence of an effective thin interfacial dielectric layer between the metal contact and the underlying graphene. Electrical results from quantum transport calculations accounting for this modified electrostatics corroborate well with the experimentally measured contact resistances. This paper indicates that the engineering of a metal-graphene interface is a crucial step toward reducing the contact resistance for high-performance graphene transistors.
引用
收藏
页码:3925 / 3932
页数:8
相关论文
共 39 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]  
[Anonymous], 2010, NAT TECHN ROADM SEM
[3]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[4]   Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point [J].
Blake, P. ;
Yang, R. ;
Morozov, S. V. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Zhukov, A. A. ;
Nair, R. R. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Geim, A. K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1068-1071
[5]   Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
PHYSICAL REVIEW B, 2008, 77 (03)
[6]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Contact resistance and shot noise in graphene transistors [J].
Cayssol, J. ;
Huard, B. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW B, 2009, 79 (07)
[9]   Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW B, 2006, 74 (04)
[10]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209