Room-temperature entanglement between single defect spins in diamond

被引:372
作者
Dolde, F. [1 ,2 ]
Jakobi, I. [1 ,2 ,3 ,4 ]
Naydenov, B. [1 ,2 ]
Zhao, N. [1 ,2 ]
Pezzagna, S. [5 ]
Trautmann, C. [6 ,7 ]
Meijer, J. [5 ]
Neumann, P. [1 ,2 ]
Jelezko, F. [1 ,2 ,3 ,4 ]
Wrachtrup, J. [1 ,2 ]
机构
[1] Univ Stuttgart, Phys Inst 3, Res Ctr SCoPE, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, IQST, D-70569 Stuttgart, Germany
[3] Univ Ulm, Inst Quantenopt, D-89081 Ulm, Germany
[4] Univ Ulm, IQST, D-89081 Ulm, Germany
[5] Ruhr Univ Bochum, RUBION, D-44780 Bochum, Germany
[6] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany
[7] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
关键词
MAGNETIC-RESONANCE; COUPLED ELECTRON; COLOR-CENTERS; QUANTUM; REALIZATION; MICROSCOPY; STATES;
D O I
10.1038/nphys2545
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement is the central yet fleeting phenomenon of quantum physics. Once being considered a peculiar counter-intuitive property of quantum theory(1), it has developed into the most central element of quantum technology. Consequently, there have been a number of experimental demonstrations of entanglement between photons(,)(2) atoms(3), ions(4) and solid-state systems such as spins or quantum dots(5-7), superconducting circuits(8,9) and macroscopic diamond(10). Here we experimentally demonstrate entanglement between two engineered single solid-state spin quantum bits (qubits) at ambient conditions. Photon emission of defect pairs reveals ground-state spin correlation. Entanglement (fidelity = 0.67 +/- 0.04) is proved by quantum state tomography. Moreover, the lifetime of electron spin entanglement is extended to milliseconds by entanglement swapping to nuclear spins. The experiments mark an important step towards a scalable room-temperature quantum device being of potential use in quantum information processing as well as metrology.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 31 条
[21]  
Pfaff W, 2013, NAT PHYS, V9, P29, DOI [10.1038/NPHYS2444, 10.1038/nphys2444]
[22]   A quantum spin transducer based on nanoelectromechanical resonator arrays [J].
Rabl, P. ;
Kolkowitz, S. J. ;
Koppens, F. H. L. ;
Harris, J. G. E. ;
Zoller, P. ;
Lukin, M. D. .
NATURE PHYSICS, 2010, 6 (08) :602-608
[23]   An elementary quantum network of single atoms in optical cavities [J].
Ritter, Stephan ;
Noelleke, Christian ;
Hahn, Carolin ;
Reiserer, Andreas ;
Neuzner, Andreas ;
Uphoff, Manuel ;
Muecke, Martin ;
Figueroa, Eden ;
Bochmann, Joerg ;
Rempe, Gerhard .
NATURE, 2012, 484 (7393) :195-U73
[24]   STED microscopy reveals crystal colour centres with nanometric resolution [J].
Rittweger, Eva ;
Han, Kyu Young ;
Irvine, Scott E. ;
Eggeling, Christian ;
Hell, Stefan W. .
NATURE PHOTONICS, 2009, 3 (03) :144-147
[25]   Room-Temperature Implementation of the Deutsch-Jozsa Algorithm with a Single Electronic Spin in Diamond [J].
Shi, Fazhan ;
Rong, Xing ;
Xu, Nanyang ;
Wang, Ya ;
Wu, Jie ;
Chong, Bo ;
Peng, Xinhua ;
Kniepert, Juliane ;
Schoenfeld, Rolf-Simon ;
Harneit, Wolfgang ;
Feng, Mang ;
Du, Jiangfeng .
PHYSICAL REVIEW LETTERS, 2010, 105 (04)
[26]   Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits [J].
Shulman, M. D. ;
Dial, O. E. ;
Harvey, S. P. ;
Bluhm, H. ;
Umansky, V. ;
Yacoby, A. .
SCIENCE, 2012, 336 (6078) :202-205
[27]   Entanglement in a solid-state spin ensemble [J].
Simmons, Stephanie ;
Brown, Richard M. ;
Riemann, Helge ;
Abrosimov, Nikolai V. ;
Becker, Peter ;
Pohl, Hans-Joachim ;
Thewalt, Mike L. W. ;
Itoh, Kohei M. ;
Morton, John J. L. .
NATURE, 2011, 470 (7332) :69-72
[28]   Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond [J].
Toyli, David M. ;
Weis, Christoph D. ;
Fuchs, Gregory D. ;
Schenkel, Thomas ;
Awschalom, David D. .
NANO LETTERS, 2010, 10 (08) :3168-3172
[29]   Quantifying entanglement [J].
Vedral, V ;
Plenio, MB ;
Rippin, MA ;
Knight, PL .
PHYSICAL REVIEW LETTERS, 1997, 78 (12) :2275-2279
[30]  
Waldherr G, 2012, NAT NANOTECHNOL, V7, P105, DOI [10.1038/NNANO.2011.224, 10.1038/nnano.2011.224]