Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm

被引:162
作者
Huber, R [1 ]
Wojtkowski, M
Fujimoto, JG
Jiang, JY
Cable, AE
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Thorlabs Inc, Newton, NJ 07860 USA
关键词
D O I
10.1364/OPEX.13.010523
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate high resolution, three-dimensional OCT imaging with a high speed, frequency swept 1300 nm laser source. A new external cavity semiconductor laser design, optimized for application to swept source OCT, is discussed. The design of the laser enables adjustment of an internal spectral filter to change the filter bandwidth and provides a robust bulk optics design. The laser generates similar to 30 mW instantaneous peak power at an effective 16 kHz sweep rate with a tuning range of similar to 133 nm full width. In frequency domain reflectometry and OCT applications, 109 dB sensitivity and similar to 10 mu m axial resolution in tissue can be achieved with the swept laser. The high imaging speeds enable three-dimensional OCT imaging, including zone focusing or C-mode imaging and image fusion to acquire large depth of field data sets with high resolution. In addition, three-dimensional OCT data provides coherence gated en face images similar to optical coherence microscopy (OCM) and also enables the generation of images similar to confocal microscopy by summing signals in the axial direction. High speed, three-dimensional OCT imaging can provide comprehensive data which combines the advantages of optical coherence tomography and microscopy in a single system. (c) 2005 Optical Society of America.
引用
收藏
页码:10523 / 10538
页数:16
相关论文
共 53 条
[21]   Optical coherence tomography and microscopy in gastrointestinal tissues [J].
Izatt, JA ;
Kulkarni, MD ;
Wang, HW ;
Kobayashi, K ;
Sivak, MV .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2 (04) :1017-1028
[22]   Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography [J].
Jiao, SL ;
Knighton, R ;
Huang, XR ;
Gregori, G ;
Puliafito, CA .
OPTICS EXPRESS, 2005, 13 (02) :444-452
[23]   Modeless operation of a wavelength-agile laser by high-speed cavity length changes [J].
Kranendonk, LA ;
Bartula, RJ ;
Sanders, ST .
OPTICS EXPRESS, 2005, 13 (05) :1498-1507
[24]   Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography [J].
Leitgeb, R ;
Wojtkowski, M ;
Kowalczyk, A ;
Hitzenberger, CK ;
Sticker, M ;
Fercher, AF .
OPTICS LETTERS, 2000, 25 (11) :820-822
[25]   Performance of fourier domain vs. time domain optical coherence tomography [J].
Leitgeb, R ;
Hitzenberger, CK ;
Fercher, AF .
OPTICS EXPRESS, 2003, 11 (08) :889-894
[26]   Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography [J].
Leitgeb, RA ;
Schmetterer, L ;
Hitzenberger, CK ;
Fercher, AF ;
Berisha, F ;
Wojtkowski, M ;
Bajraszewski, T .
OPTICS LETTERS, 2004, 29 (02) :171-173
[27]  
Lexer F, 1999, J MOD OPTIC, V46, P541, DOI 10.1080/09500349908231282
[28]   Wavelength-tuning interferometry of intraocular distances [J].
Lexer, F ;
Hitzenberger, CK ;
Fercher, AF ;
Kulhavy, M .
APPLIED OPTICS, 1997, 36 (25) :6548-6553
[29]   In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve [J].
Nassif, NA ;
Cense, B ;
Park, BH ;
Pierce, MC ;
Yun, SH ;
Bouma, BE ;
Tearney, GJ ;
Chen, TC ;
de Boer, JF .
OPTICS EXPRESS, 2004, 12 (03) :367-376
[30]   Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers [J].
Oh, WY ;
Yun, SH ;
Tearney, GJ ;
Bouma, BE .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (03) :678-680