New Aspects of Carrier Multiplication in Semiconductor Nanocrystals

被引:360
作者
Mcguire, John A. [1 ]
Joo, Jin [1 ]
Pietryga, Jeffrey M. [1 ]
Schaller, Richard D. [1 ]
Klimov, Victor I. [1 ]
机构
[1] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
关键词
D O I
10.1021/ar800112v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One consequence of strong spatial confinement of electronic wave functions in semiconductor nanocrystals (NCs) is a significant enhancement in carrier-carrier Coulomb interactions. This effect leads to a number of novel physical phenomena including ultrafast decay of multiple electron-hole pairs (multiexcitons) by Auger recombination and high-efficiency generation of mutiexcitons by single photons via carrier multiplication (CM). Significant recent interest in multiexciton phenomena in NCs has been stimulated by studies of NC lasing, as well as potential applications of CM in solar-energy conversion. The focus of this Account is on CM. In this process, the kinetic energy of a "hot" electron (or a "hot" hole) does not dissipate as heat but is, instead, transferred via the Coulomb interaction to the valence-band electron, exciting it across the energy gap. Because of restrictions imposed by energy and translational-momentum conservation, as well as rapid energy loss due to phonon emission, CM is inefficient in bulk semiconductors, particularly at energies relevant to solar energy conversion. On the other hand, the CM efficiency can potentially be enhanced in zero-dimensional NCs because of factors such as a wide separation between discrete electronic states, which inhibits phonon emission ("phonon bottleneck"), enhanced Coulomb interactions, and relaxation in translational-momentum conservation. Here, we investigate CM in PbSe NCs by applying time-resolved photoluminescence and transient absorption. Both techniques show clear signatures of CM with efficiencies that are in good agreement with each other. NCs of the same energy gap show moderate batch-to-batch variations (within similar to 30%) in apparent multiexciton yields and larger variations (more than a factor of 3) due to differences in sample conditions (stirred vs; static solutions). These results indicate that NC surface properties may affect the CM process. They also point toward potential interference from extraneous effects such as NC photoionization that can distort the results of CM studies. CM yields measured under conditions when extraneous effects are suppressed via intense sample stirring and the use of extremely low pump levels (0.02-0.03 photons absorbed per NC per pulse) reveal that both the electron-hole creation energy and the CM threshold are reduced compared with those in bulk solids. These results indicate a confinement-induced enhancement in the CM process in NC materials. Further optimization of CM performance should be possible by utilizing more complex (for example, shaped-controlled or heterostructured) NCs that allow for facile manipulation of carrier-carrier interactions, as well as single and multiexciton energies and dynamics.
引用
收藏
页码:1810 / 1819
页数:10
相关论文
共 47 条
[1]   ELECTRON-HOLE-PAIR CREATION ENERGIES IN SEMICONDUCTORS [J].
ALIG, RC ;
BLOOM, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (22) :1522-1525
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Role of impact ionization in multiple exciton generation in PbSe nanocrystals [J].
Allan, G. ;
Delerue, C. .
PHYSICAL REVIEW B, 2006, 73 (20)
[4]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[5]   On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots [J].
Ben-Lulu, Meirav ;
Mocatta, David ;
Bonn, Mischa ;
Banin, Uri ;
Ruhman, Sanford .
NANO LETTERS, 2008, 8 (04) :1207-1211
[6]   INTRINSIC MECHANISM FOR THE POOR LUMINESCENCE PROPERTIES OF QUANTUM-BOX SYSTEMS [J].
BENISTY, H ;
SOTOMAYORTORRES, CM ;
WEISBUCH, C .
PHYSICAL REVIEW B, 1991, 44 (19) :10945-10948
[8]   Efficient inverse Auger recombination at threshold in CdSe nanocrystals [J].
Califano, M ;
Zunger, A ;
Franceschetti, A .
NANO LETTERS, 2004, 4 (03) :525-531
[9]   Direct carrier multiplication due to inverse Auger scattering in CdSe quantum dots [J].
Califano, M ;
Zunger, A ;
Franceschetti, A .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2409-2411
[10]   AUGER IONIZATION OF SEMICONDUCTOR QUANTUM DROPS IN A GLASS MATRIX [J].
CHEPIC, DI ;
EFROS, AL ;
EKIMOV, AI ;
VANOV, MG ;
KHARCHENKO, VA ;
KUDRIAVTSEV, IA ;
YAZEVA, TV .
JOURNAL OF LUMINESCENCE, 1990, 47 (03) :113-127