A mechanism for the formation of annealed compact oxide layers at the interface between anodic titania nanotube arrays and Ti foil

被引:24
作者
Chen, Chien-Chon [1 ,2 ,3 ]
Say, Wen C. [4 ]
Hsieh, Sheng-Jen [5 ,6 ]
Diau, Eric Wei-Guang [1 ,2 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Chem, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Inst Mol Sci, Hsinchu 30010, Taiwan
[3] Natl United Univ, Dept Energy & Resources, Miaoli 36003, Taiwan
[4] Natl Taipei Univ Technol, Dept Mat & Mineral Resources Engn, Taipei 10643, Taiwan
[5] Texas A&M Univ, Dept Engn Technol, College Stn, TX 77843 USA
[6] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2009年 / 95卷 / 03期
关键词
SENSITIZED SOLAR-CELLS; MU-M; FABRICATION; OXIDATION; LENGTH; ANODIZATION; SURFACE;
D O I
10.1007/s00339-009-5093-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a mechanism for the growth of crystalline anodic titanium-oxide (ATO) nanochannel arrays based on thermodynamic considerations and structural imperfections. Both amorphous and crystalline ATO films were obtained from the anodization of a titanium foil. Amorphous ATO nanotubes have a single-layer form, which makes them inefficient for use in photo-catalytic and solar-cell applications. Annealed ATO nanotubes are considered non-stoichiometric if the effect of oxygen partial pressure on the composition is significant. The driving force behind growing crystalline ATO nanotubes is the drawing of oxygen from the atmosphere to the oxygen site, which consequently decreases the concentration of oxygen vacancies in the anatase phase. The small ionization energies of titanium ions produce the stoichiometric defects. A diagram showing Gibbs energy and Kroger-Vink notation to indicate the strong influence of the non-stoichiometric ATO structure is deduced.
引用
收藏
页码:889 / 898
页数:10
相关论文
共 31 条
[21]   Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness [J].
Shin, HJ ;
Jeong, DK ;
Lee, JG ;
Sung, MM ;
Kim, JY .
ADVANCED MATERIALS, 2004, 16 (14) :1197-+
[22]   Formation of self-organized niobium porous oxide on niobium [J].
Sieber, I ;
Hildebrand, H ;
Friedrich, A ;
Schmuki, P .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (01) :97-100
[23]   Fabrication and characterization of smooth high aspect ratio zirconia nanotubes [J].
Tsuchiya, H ;
Macak, JM ;
Taveira, L ;
Schmuki, P .
CHEMICAL PHYSICS LETTERS, 2005, 410 (4-6) :188-191
[24]   Self-organized porous WO3 formed in NaF electrolytes [J].
Tsuchiya, H ;
Macak, JM ;
Sieber, I ;
Taveira, L ;
Ghicov, A ;
Sirotna, K ;
Schmuki, P .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (03) :295-298
[25]   Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization [J].
Tsuchiya, H ;
Schmuki, P .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (01) :49-52
[26]   Crystallization and high-temperature structural stability of titanium oxide nanotube arrays [J].
Varghese, OK ;
Gong, DW ;
Paulose, M ;
Grimes, CA ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2003, 18 (01) :156-165
[27]   Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework [J].
Yamashita, H ;
Ichihashi, Y ;
Zhang, SG ;
Matsumura, Y ;
Souma, Y ;
Tatsumi, T ;
Anpo, M .
APPLIED SURFACE SCIENCE, 1997, 121 :305-309
[28]   In situ templated synthesis of anatase single-crystal nanotube arrays [J].
Zhao, JL ;
Wang, XH ;
Sun, TY ;
Li, LT .
NANOTECHNOLOGY, 2005, 16 (10) :2450-2454
[29]   Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J].
Zhu, Kai ;
Neale, Nathan R. ;
Miedaner, Alexander ;
Frank, Arthur J. .
NANO LETTERS, 2007, 7 (01) :69-74
[30]   Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach [J].
Zwilling, V ;
Aucouturier, M ;
Darque-Ceretti, E .
ELECTROCHIMICA ACTA, 1999, 45 (06) :921-929