Explicit variable step-size and time-reversible integration

被引:30
作者
Holder, T
Leimkuhler, B [1 ]
Reich, S
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[2] Konrad Zuse Zentrum, D-14195 Berlin, Germany
[3] Univ Surrey, Dept Math & Stat, Guildford GU2 5XH, Surrey, England
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0168-9274(01)00089-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Huang and Leimkuhler [SIAM J. Sci. Comput. 18 (1997) 239-256], a variable step-size, semi-explicit variant of the explicit Stormer-Verlet method has been suggested for the time-reversible integration of Newton's equations of motion. Here we propose a fully explicit version of this approach applicable to explicit and symmetric integration methods for general time-reversible differential equations. This approach greatly simplifies the implementation of the method while providing a straightforward approach to higher-order reversible variable time-step integration. As applications, we discuss the variable step-size, time-reversible, and fully explicit integration of rigid body motion and the Kepler problem. (C) 2001 Published by Elsevier Science B.V. on behalf of IMACS.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 24 条
[1]   A time-reversible variable-stepsize integrator for constrained dynamics [J].
Barth, E ;
Leimkuhler, B ;
Reich, S .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (03) :1027-1044
[2]   Time-transformations for reversible variable stepsize integration [J].
Bond, SD ;
Leimkuhler, BJ .
NUMERICAL ALGORITHMS, 1998, 19 (1-4) :55-71
[3]   Variable step implementation of geometric integrators [J].
Calvo, MP ;
Lopez-Marcos, MA ;
Sanz-Serna, JM .
APPLIED NUMERICAL MATHEMATICS, 1998, 28 (01) :1-16
[4]   Asymptotic error analysis of the Adaptive Verlet method [J].
Cirilli, S ;
Hairer, E ;
Leimkuhler, B .
BIT NUMERICAL MATHEMATICS, 1999, 39 (01) :25-33
[5]   Symplectic splitting methods for rigid body molecular dynamics [J].
Dullweber, A ;
Leimkuhler, B ;
McLachlan, R .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (15) :5840-5851
[6]   Variable time step integration with symplectic methods [J].
Hairer, E .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :219-227
[7]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[8]  
HOLDER T, 1997, THESIS FREIE U BERLI
[9]   The adaptive Verlet method [J].
Huang, WZ ;
Leimkuhler, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :239-256
[10]   BUILDING A BETTER LEAPFROG [J].
HUT, P ;
MAKINO, J ;
MCMILLAN, S .
ASTROPHYSICAL JOURNAL, 1995, 443 (02) :L93-L96