Emission dynamics and optical gain of 1.3-μm (GaIn)(NAs)/GaAs lasers

被引:39
作者
Hofmann, MR [1 ]
Gerhardt, N
Wagner, AM
Ellmers, C
Höhnsdorf, F
Koch, J
Stolz, W
Koch, SW
Rühle, WW
Hader, J
Moloney, JV
O'Reilly, EP
Borchert, B
Egorov, AY
Riechert, H
Schneider, HC
Chow, WW
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Univ Marburg, Wissensch Zentrum Mat Wissensch, D-35032 Marburg, Germany
[3] Univ Arizona, Ctr Math Sci, Tucson, AZ 85721 USA
[4] Univ Surrey, Dept Phys, Guildford GU2 5XH, Surrey, England
[5] Infineon Technol, D-81730 Munich, Germany
[6] Sandia Natl Labs, Albuquerque, NM 87185 USA
基金
美国能源部;
关键词
dynamics; gain measurement; modeling; nitrogen compounds; optical fiber communication; optical spectroscopy; quantum-well lasers; semiconductor heterojunctions;
D O I
10.1109/3.980275
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ultrafast emission dynamics of a 1.3-mum (GaIn)(NAs)/GaAs vertical-cavity surface-emitting laser is studied by femtosecond luminescence upconversion. We obtain a minimum peak delay of 15.5 ps and a minimum pulse width of 10.5 ps. Laser operation with picosecond emission dynamics is demonstrated over a temperature range from 30 to 388 K. The bandgap shift with temperature of (GaIn)(NAs)/GaAs is determined to be about - 2.9 . 10(-4) eV/K, which is smaller than for GaAs. Our measurements of the optical gain provide gain spectra similar to those of commercial (GaIn)(PAs)/InP - structures at moderate densities but broaden considerably for elevated carrier densities due to the stronger carrier confinement. We compare our experimental results with gain spectra calculated from a microscopic model and confirm the predictive capability of the model. The theoretical gain spectra are used as the input for a calculation of the temperature dependence of the (GaIn)(NAs)/GaAs surface-emitter emission which results in very good agreement with experiment.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 52 条
[1]   Low-temperature optimized vertical-cavity lasers with submilliamp threshold currents over the 77-370 K temperature range [J].
Akulova, YA ;
Thibeault, BJ ;
Ko, J ;
Coldren, LA .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (03) :277-279
[2]  
Bouche N, 1998, APPL PHYS LETT, V73, P2718, DOI 10.1063/1.122569
[3]   HIGH REFLECTIVITY 1.55-MU-M INP/INGAASP BRAGG MIRROR GROWN BY CHEMICAL BEAM EPITAXY [J].
CHOA, FS ;
TAI, K ;
TSANG, WT ;
CHU, SNG .
APPLIED PHYSICS LETTERS, 1991, 59 (22) :2820-2822
[4]   Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm [J].
Choquette, KD ;
Klem, JF ;
Fischer, AJ ;
Blum, O ;
Allerman, AA ;
Fritz, IJ ;
Kurtz, SR ;
Breiland, WG ;
Sieg, R ;
Geib, KM ;
Scott, JW ;
Naone, RL .
ELECTRONICS LETTERS, 2000, 36 (16) :1388-1390
[5]   Calculation of quantum well laser gain spectra [J].
Chow, WW ;
Girndt, A ;
Koch, S .
OPTICS EXPRESS, 1998, 2 (04) :119-124
[6]   Comparison of experimental and theoretical GaInP quantum well gain spectra [J].
Chow, WW ;
Smowton, PM ;
Blood, P ;
Girndt, A ;
Jahnke, F ;
Koch, SW .
APPLIED PHYSICS LETTERS, 1997, 71 (02) :157-159
[7]   Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers [J].
Chow, WW ;
Choquette, KD ;
Crawford, MH ;
Lear, KL ;
Hadley, GR .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (10) :1810-1824
[8]   Laser gain and threshold properties in compressive-strained and lattice-matched GaInNAs/GaAs quantum wells [J].
Chow, WW ;
Jones, ED ;
Modine, NA ;
Allerman, AA ;
Kurtz, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (19) :2891-2893
[9]  
Chow WW., 1999, SEMICONDUCTOR LASER, DOI 10.1007/978-3-662-03880-2
[10]   LOW-THRESHOLD, WAFER FUSED LONG-WAVELENGTH VERTICAL-CAVITY LASERS [J].
DUDLEY, JJ ;
BABIC, DI ;
MIRIN, R ;
YANG, L ;
MILLER, BI ;
RAM, RJ ;
REYNOLDS, T ;
HU, EL ;
BOWERS, JE .
APPLIED PHYSICS LETTERS, 1994, 64 (12) :1463-1465