Electrical control of spin coherence in semiconductor nanostructures

被引:276
作者
Salis, G
Kato, Y
Ensslin, K
Driscoll, DC
Gossard, AC
Awschalom, DD [1 ]
机构
[1] Univ Calif Santa Barbara, Ctr Spintron & Quantum Comp, Santa Barbara, CA 93106 USA
[2] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1038/414619a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The processing of quantum information based on the electron spin degree of freedom(1,2) requires fast and coherent manipulation of local spins. One approach is to provide spatially selective tuning of the spin splitting-which depends on the g-factor-by using magnetic fields(3), but this requires their precise control at reduced length scales. Alternative proposals employ electrical gating(1) and spin engineering in semiconductor heterostructures involving materials with different g-factors. Here we show that spin coherence can be controlled in a specially designed AlxGa1-xAs quantum well in which the Al concentration x is gradually varied across the structure. Application of an electric field leads to a displacement of the electron wavefunction within the quantum well, and because the electron g-factor varies strongly with x, the spin splitting is therefore also changed. Using time-resolved optical techniques, we demonstrate gate-voltage-mediated control of coherent spin precession over a 13-GHz frequency range in a fixed magnetic field of 6 T, including complete suppression of precession, reversal of the sign of g, and operation up to room temperature.
引用
收藏
页码:619 / 622
页数:5
相关论文
共 20 条
[11]   CONDUCTION-BAND SPIN SPLITTING OF TYPE-I GAXIN1-XAS INP QUANTUM-WELLS [J].
KOWALSKI, B ;
OMLING, P ;
MEYER, BK ;
HOFMANN, DM ;
WETZEL, C ;
HARLE, V ;
SCHOLZ, F ;
SOBKOWICZ, P .
PHYSICAL REVIEW B, 1994, 49 (20) :14786-14789
[12]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[13]   INTERFACE BETWEEN LOW-TEMPERATURE-GROWN GAAS AND UNDOPED GAAS AS A CONDUCTION BARRIER FOR BACK GATES [J].
MARANOWSKI, KD ;
IBBETSON, JP ;
CAMPMAN, KL ;
GOSSARD, AC .
APPLIED PHYSICS LETTERS, 1995, 66 (25) :3459-3461
[14]   BAND-EDGE ELECTROABSORPTION IN QUANTUM WELL STRUCTURES - THE QUANTUM-CONFINED STARK-EFFECT [J].
MILLER, DAB ;
CHEMLA, DS ;
DAMEN, TC ;
GOSSARD, AC ;
WIEGMANN, W ;
WOOD, TH ;
BURRUS, CA .
PHYSICAL REVIEW LETTERS, 1984, 53 (22) :2173-2176
[15]   BAND OFFSETS FROM 2 SPECIAL GAAS-ALXGA1-XAS QUANTUM-WELL STRUCTURES [J].
MILLER, RC ;
GOSSARD, AC ;
KLEINMAN, DA .
PHYSICAL REVIEW B, 1985, 32 (08) :5443-5446
[16]   TEMPERATURE-DEPENDENCE OF THE ELECTRON LANDE G-FACTOR IN GAAS [J].
OESTREICH, M ;
RUHLE, WW .
PHYSICAL REVIEW LETTERS, 1995, 74 (12) :2315-2318
[17]   Spin relaxation quenching in semiconductor quantum dots [J].
Paillard, M ;
Marie, X ;
Renucci, P ;
Amand, T ;
Jbeli, A ;
Gérard, JM .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1634-1637
[18]   Wave function spectroscopy in quantum wells with tunable electron density [J].
Salis, G ;
Graf, B ;
Ensslin, K ;
Campman, K ;
Maranowski, K ;
Gossard, AC .
PHYSICAL REVIEW LETTERS, 1997, 79 (25) :5106-5109
[19]   MAGNETIC G-FACTOR OF ELECTRONS IN GAAS ALXGA1-XAS QUANTUM-WELLS [J].
SNELLING, MJ ;
FLINN, GP ;
PLAUT, AS ;
HARLEY, RT ;
TROPPER, AC ;
ECCLESTON, R ;
PHILLIPS, CC .
PHYSICAL REVIEW B, 1991, 44 (20) :11345-11352
[20]   OPTICAL DETECTION OF CONDUCTION-ELECTRON SPIN-RESONANCE IN GAAS, GA1-XINXAS, AND GA1-XALXAS [J].
WEISBUCH, C ;
HERMANN, C .
PHYSICAL REVIEW B, 1977, 15 (02) :816-822