On the modeling and design of Schottky field-effect transistors

被引:24
作者
Vega, RA [1 ]
机构
[1] Rochester Inst Technol, Microelect Engn Dept, Rochester, NY 14623 USA
[2] Biophan Technol Inc, Rochester, NY 14623 USA
关键词
airy function; ambipolar; metal source/drain (S/D); nanotechnology; Schottky barrier (SB); semiconductor device modeling; tunneling model;
D O I
10.1109/TED.2006.871176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A short-channel threshold-voltage model and an Airy function transfer-matrix tunneling model have been adopted and modified to result in a one-dimensional Schottky field-effect transistor (SFET) model. Model calculations were performed in MATLAB 7, and the results suggest that, for small Schottky barrier (SB) heights, the tunneling current does not play a dominant role in the total ON-state current. Instead, increases in current at the gate biases beyond the source-body flat band voltage (V-sbfb) are due mostly to the increases in thermal current from SB lowering (SBL), not tunneling current modulation. Also, the inclusion of SBL in this model suggests that barrier heights on the order of 0.25 eV can indeed support greater than 1-mA/mu m drive current density for both n-channel and p-channel SFETs for 25-nm CMOS.
引用
收藏
页码:866 / 874
页数:9
相关论文
共 21 条
[1]   REVERSE CURRENT-VOLTAGE CHARACTERISTICS OF METAL-SILICIDE SCHOTTKY DIODES [J].
ANDREWS, JM ;
LEPSELTER, MP .
SOLID-STATE ELECTRONICS, 1970, 13 (07) :1011-+
[2]   Atomic-scale modeling of source-to-drain tunneling in ultimate Schottky barrier Double-Gate MOSFET's [J].
Bescond, M ;
Autran, JL ;
Munteanu, D ;
Cavassilas, N ;
Lannoo, M .
ESSDERC 2003: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2003, :395-398
[3]   THEORY OF RESONANT TUNNELING IN A VARIABLY SPACED MULTIQUANTUM WELL STRUCTURE - AN AIRY FUNCTION-APPROACH [J].
BRENNAN, KF ;
SUMMERS, CJ .
JOURNAL OF APPLIED PHYSICS, 1987, 61 (02) :614-623
[4]   Subthreshold and scaling of PtSi Schottky barrier MOSFETs [J].
Calvet, LE ;
Luebben, H ;
Reed, MA ;
Wang, C ;
Snyder, JP ;
Tucker, JR .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (5-6) :501-506
[5]  
Connell R.W., 1998, J INTERDISCIPLINARY, V3, P1
[6]   Optimizing Schottky S/D offset for 25-nm dual-gate CMOS performance [J].
Connelly, D ;
Faulkner, C ;
Grupp, DE .
IEEE ELECTRON DEVICE LETTERS, 2003, 24 (06) :411-413
[7]   A computational study of thin-body, double-gate, Schottky barrier MOSFETs [J].
Guo, J ;
Lundstrom, MS .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (11) :1897-1902
[8]   Two-dimensional numerical simulation of Schottky barrier MOSFET with channel length to 10 nm [J].
Huang, CK ;
Zhang, WE ;
Yang, CH .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1998, 45 (04) :842-848
[9]   Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model [J].
Ieong, M ;
Solomon, PM ;
Laux, SE ;
Wong, HSP ;
Chidambarrao, D .
INTERNATIONAL ELECTRON DEVICES MEETING 1998 - TECHNICAL DIGEST, 1998, :733-736
[10]   Erbium silicided n-type Schottky barrier tunnel transistors for nanometer regime applications [J].
Jang, M ;
Lee, S ;
Park, K .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (04) :205-209