A polysilicon nanoelectrospray-mass spectrometry source based on a microfluidic capillary slot

被引:22
作者
Arscott, S
Le Gac, S
Rolando, C
机构
[1] Univ Sci & Tech Lille Flandres Artois, CNRS, UMR8520, IEMN, F-59652 Villeneuve Dascq, France
[2] Univ Sci & Tech Lille Flandres Artois, CNRS, UMR8009, LCOM, F-59652 Villeneuve Dascq, France
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2005年 / 106卷 / 02期
关键词
nanoelectrospray ionisation; silicon microtechnology; microfluidics; lab-on-a-chip; micro-TAS; mass spectrometry; proteomics;
D O I
10.1016/j.snb.2004.09.026
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A novel micromachining process for the fabrication of miniaturised polysilicon-based nanoelectrospray ionisation-mass spectrometry (nanoESI-MS) sources is developed in this paper. The nanoESI source topology is composed of two highly planar triangular free-standing cantilevers which form a microfluidic capillary slot having a width (omega) and a height (h). A combination of low pressure chemical vapour deposition (LPCVD), pattern-transfer, reactive ion etching (RIE) and sacrificial layer etching is used to fabricate the nanoESI sources which project horizontally beyond the edge of a silicon substrate by a length of 800 mu m. NanoESI sources having two different capillary slot dimensions are tested: w x h = 1.8 mu m x 2 mu m and 2.5 mu m x 5 mu m. The sources have been tested on an ion trap mass spectrometer (MS) using a standard peptide sample (Glu-Fibrinopeptide B) at a concentration of 1 mu M. The resultant mass spectra show that the microfabricated capillary slot-based nanoESI sources presented here demonstrate state-of-the-art performances in terms of electrospray ionisation voltage (0.7 kV) and test solution aqueous concentration (90% H,O). (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:741 / 749
页数:9
相关论文
共 39 条
[1]   Microfluidic devices for cellomics: a review [J].
Andersson, H ;
van den Berg, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 92 (03) :315-325
[2]   A micro-nib nanoelectro spray source for mass spectrometry [J].
Arscott, S ;
Le Gac, S ;
Druon, C ;
Tabourier, P ;
Rolando, C .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 98 (2-3) :140-147
[3]   Advanced sacrificial poly-Si technology for fluidic systems [J].
Berenschot, JW ;
Tas, NR ;
Lammerink, TSJ ;
Elwenspoek, M ;
van den Berg, A .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2002, 12 (05) :621-624
[4]  
BRINKMANN M, IN PRESS APPL PHYS L
[5]   Silicon dioxide sacrificial layer etching in surface micromachining [J].
Buhler, J ;
Steiner, FP ;
Baltes, H .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1997, 7 (01) :R1-R13
[6]   Suspended microchannel resonators for biomolecular detection [J].
Burg, TP ;
Manalis, SR .
APPLIED PHYSICS LETTERS, 2003, 83 (13) :2698-2700
[7]   Surface micromachining for microelectromechanical systems [J].
Bustillo, JM ;
Howe, RT ;
Muller, RS .
PROCEEDINGS OF THE IEEE, 1998, 86 (08) :1552-1574
[8]   Control of stress in highly doped polysilicon multi-layer diaphragm structure [J].
Chen, LQ ;
Miao, JM ;
Guo, LH ;
Lin, RM .
SURFACE & COATINGS TECHNOLOGY, 2001, 141 (01) :96-102
[9]  
DESAI A, 1997, P INT C SOL STAT SEN
[10]  
Figeys D, 2001, ELECTROPHORESIS, V22, P208, DOI 10.1002/1522-2683(200101)22:2<208::AID-ELPS208>3.0.CO