Structures and energetics of hydrogen-terminated silicon nanowire surfaces

被引:100
作者
Zhang, RQ [1 ]
Lifshitz, Y
Ma, DDD
Zhao, YL
Frauenheim, T
Lee, ST
Tong, SY
机构
[1] Technion Israel Inst Technol, Dept Mat Sci, IL-3200 Haifa, Israel
[2] City Univ Hong Kong, Dept Phys & Mat Sci, COSDAF, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1063/1.2047555
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The analysis and density-functional tight-binding simulations of possible configurations of silicon nanowires (SiNWs) enclosed by low-index surfaces reveal a number of remarkable features. For wires along < 100 >, < 110 >, and < 111 > directions, many low-index facet configurations and cross sections are possible, making their controlled growth difficult. The < 112 > wires are the most attractive for research and applications because they have only one configuration of enclosing low-index facets with a rectangular cross section, enclosed with the most stable (111) facet and the (110) facet next to it. In general, the stability of the SiNWs is determined by a balance between (1) minimization of the surface energy gamma(111)<gamma(110)<gamma(001), and (2) minimization of the surface-to-volume ratio [svr; svr(hexagonal)>svr(rectangular)>svr(triangular)]. The energy band gaps follow the order of < 100 > wires>< 112 > wires>< 111 > wires>< 110 > wires. The results are compared with our recent scanning tunneling microscopy and transmission electron microscopy data. (c) 2005 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 20 条
[1]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[2]   QUANTUM CONFINEMENT IN SI NANOCRYSTALS [J].
DELLEY, B ;
STEIGMEIER, EF .
PHYSICAL REVIEW B, 1993, 47 (03) :1397-1400
[3]   EQUILIBRIUM SHAPE OF SI [J].
EAGLESHAM, DJ ;
WHITE, AE ;
FELDMAN, LC ;
MORIYA, N ;
JACOBSON, DC .
PHYSICAL REVIEW LETTERS, 1993, 70 (11) :1643-1646
[4]   Structure and stability of Si(114)-(2x1) [J].
Erwin, SC ;
Baski, AA ;
Whitman, LJ .
PHYSICAL REVIEW LETTERS, 1996, 77 (04) :687-690
[5]  
Frauenheim T, 2000, PHYS STATUS SOLIDI B, V217, P41, DOI 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO
[6]  
2-V
[7]   IDEAL HYDROGEN TERMINATION OF THE SI-(111) SURFACE [J].
HIGASHI, GS ;
CHABAL, YJ ;
TRUCKS, GW ;
RAGHAVACHARI, K .
APPLIED PHYSICS LETTERS, 1990, 56 (07) :656-658
[8]   EFFECTS OF SURFACE HYDROGEN ON THE AIR OXIDATION AT ROOM-TEMPERATURE OF HF-TREATED SI(100) SURFACES [J].
HIRASHITA, N ;
KINOSHITA, M ;
AIKAWA, I ;
AJIOKA, T .
APPLIED PHYSICS LETTERS, 1990, 56 (05) :451-453
[9]   Effect of hydrogen on the surface-energy anisotropy of diamond and silicon [J].
Hong, S ;
Chou, MY .
PHYSICAL REVIEW B, 1998, 57 (11) :6262-6265
[10]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58