Defect Transfer from Nanoparticles to Nanowires

被引:53
作者
Barth, Sven [1 ,2 ,3 ,4 ]
Boland, John J. [3 ,5 ]
Holmes, Justin D. [1 ,2 ,3 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Chem, Mat & Supercrit Fluids Grp, Cork, Ireland
[2] Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
[3] Trinity Coll Dublin, CRANN, Dublin 2, Ireland
[4] Vienna Univ Technol, Inst Mat Chem, A-1060 Vienna, Austria
[5] Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
Germanium; nanowire; solid-phase seeding; SFSS; silver; nanocrystal; defects; SILICON NANOWIRES; STACKING-FAULTS; GROWTH; SINGLE; SILVER; MECHANISM; EVOLUTION; DIFFUSION; SI; MICROSCOPY;
D O I
10.1021/nl104339w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-seeded growth of one-dimensional (1D) semiconductor nanostructures is still a very active field of research, despite the huge progress which has been made in understanding this fundamental phenomenon. Liquid growth promoters allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, and operating pressure. However the transfer of crystallographic information from a catalytic nanopartide seed to a growing nanowire has not been described in the literature. Here we define the theoretical requirements for transferring defects from nanoparticle seeds to growing semiconductor nanowires and describe why Ag nanoparticles are ideal candidates for this purpose. We detail in this paper the influence of solid Ag growth seeds on the crystal quality of Ge nanowires, synthesized using a supercritical fluid growth process. Significandy, under certain reaction conditions {111} stacking faults in the Ag seeds can be directly transferred to a high percentage of < 112 >-oriented Ge nanowires, in the form of radial twins inthe semiconductor crystals. Defict transfer from nanoparticles to nanowires could open up the possibility of engineering ID nanostructures with new and tunable physical properties and morphologies.
引用
收藏
页码:1550 / 1555
页数:6
相关论文
共 52 条
[21]   Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth [J].
Hofmann, Stephan ;
Sharma, Renu ;
Wirth, Christoph T. ;
Cervantes-Sodi, Felipe ;
Ducati, Caterina ;
Kasama, Takeshi ;
Dunin-Borkowski, Rafal E. ;
Drucker, Jeff ;
Bennett, Peter ;
Robertson, John .
NATURE MATERIALS, 2008, 7 (05) :372-375
[22]  
Hofmeister H, 2005, PHYS STATUS SOLIDI A, V202
[23]   Control of thickness and orientation of solution-grown silicon nanowires [J].
Holmes, JD ;
Johnston, KP ;
Doty, RC ;
Korgel, BA .
SCIENCE, 2000, 287 (5457) :1471-1473
[24]   Ag-Catalyzed Growth of Ge Nanostructures via the Thermal Evaporation of Ge Powder [J].
Hong, Chi-Yew ;
Tsai, Sheng-Fong ;
Chang, Han-Chen ;
Lin, Wen-Tai ;
Wu, Kuen-Hsien .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (07) :4773-4776
[25]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[26]   Fabrication and Electrical Properties of Si Nanowires Synthesized by Al Catalyzed Vapor-Liquid-Solid Growth [J].
Ke, Yue ;
Weng, Xiaojun ;
Redwing, Joan M. ;
Eichfeld, Chad M. ;
Swisher, Thomas R. ;
Mohney, Suzanne E. ;
Habib, Youssef M. .
NANO LETTERS, 2009, 9 (12) :4494-4499
[27]   Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices [J].
Kempa, Thomas J. ;
Tian, Bozhi ;
Kim, Dong Rip ;
Hu, Jinsong ;
Zheng, Xiaolin ;
Lieber, Charles M. .
NANO LETTERS, 2008, 8 (10) :3456-3460
[28]   Determination of Size Effects during the Phase Transition of a Nanoscale Au-Si Eutectic [J].
Kim, B. J. ;
Tersoff, J. ;
Wen, C. -Y. ;
Reuter, M. C. ;
Stach, E. A. ;
Ross, F. M. .
PHYSICAL REVIEW LETTERS, 2009, 103 (15)
[29]   Structure and shape transformation from multiply twinned particles to epitaxial nanocrystals: Importance of interface on the structure of Ag nanoparticles [J].
Li, BQ ;
Zuo, JM .
PHYSICAL REVIEW B, 2005, 72 (08)
[30]   Kinetically-Induced Hexagonality in Chemically Grown Silicon Nanowires [J].
Liu, Xiaohua ;
Wang, Dunwei .
NANO RESEARCH, 2009, 2 (07) :575-582