High-Yield Production and Transfer of Graphene Flakes Obtained by Anodic Bonding

被引:38
作者
Moldt, Thomas [1 ]
Eckmann, Axel [2 ,3 ]
Klar, Philipp [1 ]
Morozov, Sergey V. [4 ]
Zhukov, Alexander A. [5 ]
Novoselov, Kostya S. [6 ]
Casiraghi, Cinzia [1 ,2 ,3 ]
机构
[1] Free Univ Berlin, Dept Phys, D-1000 Berlin, Germany
[2] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England
[4] Russian Acad Sci, Inst Microelect Technol, Chernogolovka 142432, Russia
[5] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[6] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
关键词
graphene; transfer; anodic bonding; Raman spectroscopy; LARGE-AREA; HIGH-QUALITY; FILMS; GRAPHITE; DEVICE; EXFOLIATION; SCATTERING; TRANSPORT; ELECTRON; PHASE;
D O I
10.1021/nn202293f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report large-yield production of graphene flakes on glass by anodic bonding. Under optimum conditions, we counted several tens of flakes with lateral size around 20-30 mu m and a few tens of flakes with larger size. About 60-70% of the flakes have a negligible D peak. We show that it is possible to easily transfer the flakes by the wedging technique. The transfer on silicon does not damage graphene and lowers the doping. The charge mobility of the transferred flakes on silicon is on the order of 6000 cm(2)/V s (at a carrier concentration of 10(12) cm(-2)), which is typical for devices prepared on this substrate with exfoliated graphene.
引用
收藏
页码:7700 / 7706
页数:7
相关论文
共 44 条
[1]   ELECTRODE PHENOMENA DURING ANODIC BONDING OF SILICON TO SODIUM BOROSILICATE GLASS [J].
ALBAUGH, KB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (10) :3089-3094
[2]   Anodic bonded graphene [J].
Balan, Adrian ;
Kumar, Rakesh ;
Boukhicha, Mohamed ;
Beyssac, Olivier ;
Bouillard, Jean-Claude ;
Taverna, Dario ;
Sacks, William ;
Marangolo, Massimiliano ;
Lacaze, Emanuelle ;
Gohler, Roger ;
Escoffier, Walter ;
Poumirol, Jean-Marie ;
Shukla, Abhay .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (37)
[3]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[4]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[5]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[6]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[7]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[8]   Rayleigh imaging of graphene and graphene layers [J].
Casiraghi, C. ;
Hartschuh, A. ;
Lidorikis, E. ;
Qian, H. ;
Harutyunyan, H. ;
Gokus, T. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2007, 7 (09) :2711-2717
[9]   Probing disorder and charged impurities in graphene by Raman spectroscopy [J].
Casiraghi, Cinzia .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (06) :175-177
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162