Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires

被引:218
作者
Dan, Yaping [1 ]
Seo, Kwanyong [1 ]
Takei, Kuniharu [2 ]
Meza, Jhim H. [1 ]
Javey, Ali [2 ]
Crozier, Kenneth B. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Silicon nanowire; surface passivation; scanning photocurrent microscopy; solar cell; OPTICAL-ABSORPTION; SINGLE; ARRAYS;
D O I
10.1021/nl201179n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanowires have unique optical properties(1-4) and are considered as important building blocks for energy harvesting applications such as solar cells.(2,5-8) However, due to their large surface-to-volume ratios, the recombination of charge carriers through surface states reduces the carrier diffusion lengths in nanowires a few orders of magnitude,(9) often resulting in the low efficiency (a few percent or less) of nanowire-based solar cells.(7,8,10,11) Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices but remains largely unexplored.(7,12-14) Here we show that a thin layer of amorphous silicon (a-Si) coated on a single-crystalline silicon nanowire, forming a core shell structure in situ in the vapor-liquid-solid process, reduces the surface recombination nearly 2 orders of magnitude. Under illumination of modulated light, we measure a greater than 90-fold improvement in the photosensitivity of individual core-shell nanowires, compared to regular nanowires without shell. Simulations of the optical absorption of the nanowires indicate that the strong absorption of the a-Si shell contributes to this effect, but we conclude that the effect is mainly due to the enhanced carrier lifetime by surface passivation.
引用
收藏
页码:2527 / 2532
页数:6
相关论文
共 33 条
[21]   Semiconductor nanowires and nanotubes [J].
Law, M ;
Goldberger, J ;
Yang, PD .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :83-122
[22]   The effects of oxygen on the surface passivation of InP nanowires [J].
Moreira, M. Dionizio ;
Venezuela, P. ;
Schmidt, T. M. .
NANOTECHNOLOGY, 2008, 19 (06)
[23]   SURFACE PASSIVATION OF SEMICONDUCTORS [J].
NICOLLIAN, EH .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1971, 8 (05) :S39-+
[24]   LIGHT-PROPAGATION THROUGH NANOMETER-SIZED STRUCTURES - THE 2-DIMENSIONAL-APERTURE SCANNING NEAR-FIELD OPTICAL MICROSCOPE [J].
NOVOTNY, L ;
POHL, DW ;
REGLI, P .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06) :1768-1779
[25]   Multicolored Vertical Silicon Nanowires [J].
Seo, Kwanyong ;
Wober, Munib ;
Steinvurzel, Paul ;
Schonbrun, Ethan ;
Dan, Yaping ;
Ellenbogen, Tal ;
Crozier, Kenneth B. .
NANO LETTERS, 2011, 11 (04) :1851-1856
[26]   DETERMINATION OF ELECTRON-DIFFUSION LENGTH FROM PHOTOCURRENT CHARACTERISTICS OF THE STRUCTURE ITO A-SICH (P-TYPE) A-SIH A-SIH (N-TYPE) PD [J].
SERIN, T ;
SERIN, N .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1994, 59 (04) :431-433
[27]   Silicon nanowire-based solar cells [J].
Stelzner, Th ;
Pietsch, M. ;
Andrae, G. ;
Falk, F. ;
Ose, E. ;
Christiansen, S. .
NANOTECHNOLOGY, 2008, 19 (29)
[28]   Single nanowire photovoltaics [J].
Tian, Bozhi ;
Kempa, Thomas J. ;
Lieber, Charles M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :16-24
[29]   Silicon nanowire solar cells [J].
Tsakalakos, L. ;
Balch, J. ;
Fronheiser, J. ;
Korevaar, B. A. ;
Sulima, O. ;
Rand, J. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[30]  
TSAKALAKOS L, 2007, J NANOPHOTONICS, P1