Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis

被引:1422
作者
Du, Pan [1 ,3 ]
Zhang, Xiao [2 ]
Huang, Chiang-Ching [2 ]
Jafari, Nadereh [4 ]
Kibbe, Warren A. [1 ,3 ]
Hou, Lifang [2 ,3 ]
Lin, Simon M. [1 ,3 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, NUCATS, NUBIC, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Sch Med, Dept Prevent Med, Chicago, IL 60611 USA
[3] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA
[4] Northwestern Univ, Feinberg Sch Med, Ctr Genet Med, Chicago, IL 60611 USA
来源
BMC BIOINFORMATICS | 2010年 / 11卷
关键词
DNA METHYLATION; HYPERMETHYLATION; PLATFORMS; REVEALS; ARRAYS;
D O I
10.1186/1471-2105-11-587
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: High-throughput profiling of DNA methylation status of CpG islands is crucial to understand the epigenetic regulation of genes. The microarray-based Infinium methylation assay by Illumina is one platform for low-cost high-throughput methylation profiling. Both Beta-value and M-value statistics have been used as metrics to measure methylation levels. However, there are no detailed studies of their relations and their strengths and limitations. Results: We demonstrate that the relationship between the Beta-value and M-value methods is a Logit transformation, and show that the Beta-value method has severe heteroscedasticity for highly methylated or unmethylated CpG sites. In order to evaluate the performance of the Beta-value and M-value methods for identifying differentially methylated CpG sites, we designed a methylation titration experiment. The evaluation results show that the M-value method provides much better performance in terms of Detection Rate (DR) and True Positive Rate (TPR) for both highly methylated and unmethylated CpG sites. Imposing a minimum threshold of difference can improve the performance of the M-value method but not the Beta-value method. We also provide guidance for how to select the threshold of methylation differences. Conclusions: The Beta-value has a more intuitive biological interpretation, but the M-value is more statistically valid for the differential analysis of methylation levels. Therefore, we recommend using the M-value method for conducting differential methylation analysis and including the Beta-value statistics when reporting the results to investigators.
引用
收藏
页数:9
相关论文
共 24 条
[11]   Rat toxicogenomic study reveals analytical consistency across microarray platforms [J].
Guo, Lei ;
Lobenhofer, Edward K. ;
Wang, Charles ;
Shippy, Richard ;
Harris, Stephen C. ;
Zhang, Lu ;
Mei, Nan ;
Chen, Tao ;
Herman, Damir ;
Goodsaid, Federico M. ;
Hurban, Patrick ;
Phillips, Kenneth L. ;
Xu, Jun ;
Deng, Xutao ;
Sun, Yongming Andrew ;
Tong, Weida ;
Dragan, Yvonne P. ;
Shi, Leming .
NATURE BIOTECHNOLOGY, 2006, 24 (09) :1162-1169
[12]   Mechanisms of disease: Gene silencing in cancer in association with promoter hypermethylation [J].
Herman, JG ;
Baylin, SB .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 349 (21) :2042-2054
[13]   Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions [J].
Houseman, E. Andres ;
Christensen, Brock C. ;
Yeh, Ru-Fang ;
Marsit, Carmen J. ;
Karagas, Margaret R. ;
Wrensch, Margaret ;
Nelson, Heather H. ;
Wiemels, Joseph ;
Zheng, Shichun ;
Wiencke, John K. ;
Kelsey, Karl T. .
BMC BIOINFORMATICS, 2008, 9 (1)
[14]  
Illumina, 2008, GENOMESTUDIO METH MO
[15]  
Illumina, 2007, GOLDENGATE ASS METH
[16]   Comprehensive high-throughput arrays for relative methylation (CHARM) [J].
Irizarry, Rafael A. ;
Ladd-Acosta, Christine ;
Carvalho, Benilton ;
Wu, Hao ;
Brandenburg, Sheri A. ;
Jeddeloh, Jeffrey A. ;
Wen, Bo ;
Feinberg, Andrew P. .
GENOME RESEARCH, 2008, 18 (05) :780-790
[17]   Principles and challenges of genome-wide DNA methylation analysis [J].
Laird, Peter W. .
NATURE REVIEWS GENETICS, 2010, 11 (03) :191-203
[18]   Model-based variance-stabilizing transformation for Illumina microarray data [J].
Lin, Simon M. ;
Du, Pan ;
Huber, Wolfgang ;
Kibbe, Warren A. .
NUCLEIC ACIDS RESEARCH, 2008, 36 (02)
[19]   Array-based DNA methylation profiling in follicular lymphoma [J].
O'Riain, C. ;
O'Shea, D. M. ;
Yang, Y. ;
Le Dieu, R. ;
Gribben, J. G. ;
Summers, K. ;
Yeboah-Afari, J. ;
Bhaw-Rosun, L. ;
Fleischmann, C. ;
Mein, C. A. ;
Crook, T. ;
Smith, P. ;
Kelly, G. ;
Rosenwald, A. ;
Ott, G. ;
Campo, E. ;
Rimsza, L. M. ;
Smeland, E. B. ;
Chan, W. C. ;
Johnson, N. ;
Gascoyne, R. D. ;
Reimer, S. ;
Braziel, R. M. ;
Wright, G. W. ;
Staudt, L. M. ;
Lister, T. A. ;
Fitzgibbon, J. .
LEUKEMIA, 2009, 23 (10) :1858-1866
[20]   Genome-wide profiling reveals a class of normally methylated CpG island promoters [J].
Shen, Lanlan ;
Kondo, Yutaka ;
Guo, Yi ;
Zhang, Jiexin ;
Zhang, Li ;
Ahmed, Saira ;
Shu, Jingmin ;
Chen, Xinli ;
Waterland, Robert A. ;
Issa, Jean-Pierre J. .
PLOS GENETICS, 2007, 3 (10) :2023-2036