Radiative transport-based frequency-domain fluorescence tomography

被引:62
作者
Joshi, Amit [1 ]
Rasmussen, John C. [1 ]
Sevick-Muraca, Eva M. [1 ]
Wareing, Todd A. [2 ]
McGhee, John [2 ]
机构
[1] Baylor Coll Med, Dept Radiol, Div Mol Imaging, Houston, TX 77030 USA
[2] Transpire Inc, Gig Harbor, WA USA
关键词
D O I
10.1088/0031-9155/53/8/005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We report the development of radiative transport model- based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila (TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to mu M fluorophore concentration distributions in simulated mouse organs.
引用
收藏
页码:2069 / 2088
页数:20
相关论文
共 45 条
[21]   Optical tomography using the time-independent equation of radiative transfer - Part 1: forward model [J].
Klose, AD ;
Netz, U ;
Beuthan, J ;
Hielscher, AH .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2002, 72 (05) :691-713
[22]   Time resolved fluorescence tomography of turbid media based on lifetime contrast [J].
Kumar, Anand T. N. ;
Raymond, Scott B. ;
Boverman, Gregory ;
Boas, David A. ;
Bacskai, Brian J. .
OPTICS EXPRESS, 2006, 14 (25) :12255-12270
[23]   Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging [J].
Kuo, Chaincy ;
Coquoz, Olivier ;
Troy, Tamara L. ;
Xu, Heng ;
Rice, Brad W. .
JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (02)
[24]   Fully adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enhanced optical imaging in tissue [J].
Lee, Jae Hoon ;
Joshi, Amit ;
Sevick-Muraca, Eva M. .
OPTICS EXPRESS, 2007, 15 (11) :6955-6975
[25]  
Lewis E E., 1984, Computational Methods of Neutron Transport
[26]   Fluorescence optical diffusion tomography [J].
Milstein, AB ;
Oh, S ;
Webb, KJ ;
Bouman, CA ;
Zhang, Q ;
Boas, DA ;
Millane, RP .
APPLIED OPTICS, 2003, 42 (16) :3081-3094
[27]   A linear-discontinuous spatial differencing scheme for S-n radiative transfer calculations [J].
Morel, JE ;
Wareing, TA ;
Smith, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 128 (02) :445-462
[28]   Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation [J].
Ntziachristos, V ;
Weissleder, R .
OPTICS LETTERS, 2001, 26 (12) :893-895
[29]   Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media [J].
Paithankar, DY ;
Chen, AU ;
Pogue, BW ;
Patterson, MS ;
SevickMuraca, EM .
APPLIED OPTICS, 1997, 36 (10) :2260-2272
[30]   Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain [J].
Pan, Tianshu ;
Rasmussen, John C. ;
Lee, Jae Hoon ;
Sevick-Muraca, Eva M. .
MEDICAL PHYSICS, 2007, 34 (04) :1298-1311