Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping

被引:127
作者
Duan, Jianguo [1 ]
Hu, Guorong [1 ]
Cao, Yanbing [1 ]
Tan, Chaopu [2 ]
Wu, Ceng [2 ]
Du, Ke [1 ]
Peng, Zhongdong [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Guangzhou Libode New Mat Co Ltd, Guangzhou 510800, Guangdong, Peoples R China
基金
中国博士后科学基金;
关键词
Lithium ion batteries; Cathode materials; Concentration-gradient; High cycling performance; LITHIUM-ION BATTERIES; LIXNI0.8CO0.15AL0.05O2 CATHODE MATERIALS; HIGH-ENERGY; LINI0.8CO0.15AL0.05O2; SURFACE; ALUMINUM; DIFFRACTION; LINIO2; LICOO2; OXIDE;
D O I
10.1016/j.jpowsour.2016.07.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)(2) (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with similar to 10 mu m particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 330
页数:9
相关论文
共 27 条
[11]   Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8-xCo0.1Mn0.1CrxO2 [J].
Li, Ling-jun ;
Wang, Zhi-Xing ;
Liu, Qi-Cheng ;
Ye, Chang ;
Chen, Zhao-Yong ;
Gong, Li .
ELECTROCHIMICA ACTA, 2012, 77 :89-96
[12]   Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15A10.05O2 [J].
Li, Xiang ;
Xie, Zhengwei ;
Liu, Wenjing ;
Ge, Wujie ;
Wang, Hao ;
Qu, Meizhen .
ELECTROCHIMICA ACTA, 2015, 174 :1122-1130
[13]   Origin of deterioration for LiNiO2 cathode material during storage in air [J].
Liu, HS ;
Zhang, ZR ;
Gong, ZL ;
Yang, Y .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (07) :A190-A193
[14]   Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2 [J].
Liu, Wanmin ;
Hu, Guorong ;
Du, Ke ;
Peng, Zhongdong ;
Cao, Yanbing .
JOURNAL OF POWER SOURCES, 2013, 230 :201-206
[15]   Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries [J].
Liu, Wen ;
Oh, Pilgun ;
Liu, Xien ;
Lee, Min-Joon ;
Cho, Woongrae ;
Chae, Sujong ;
Kim, Youngsik ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (15) :4440-4457
[16]   Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2 [J].
Madhavi, S ;
Rao, GVS ;
Chowdari, BVR ;
Li, SFY .
JOURNAL OF POWER SOURCES, 2001, 93 (1-2) :156-162
[17]   Effects of CO2 in air on Li deintercalation from LiNi1-x-yCoxAlyO2 [J].
Matsumoto, K ;
Kuzuo, R ;
Takeya, K ;
Yamanaka, A .
JOURNAL OF POWER SOURCES, 1999, 81 :558-561
[18]   Synthesis and characterization of LiAl1/4Ni3/4O2 (R(3)over-bar-m) for lithium-ion (shuttlecock) batteries [J].
Ohzuku, T ;
Ueda, A ;
Kouguchi, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (12) :4033-4039
[19]  
Ohzuku T., 2003, CHEM LETT, V30, P642
[20]   Activation Mechanism of LiNi0.80Co0.15Al0.05O2: Surface and Bulk Operando Electrochemical, Differential Electrochemical Mass Spectrometry, and X-ray Diffraction Analyses [J].
Robert, Rosa ;
Buenzli, Christa ;
Berg, Erik J. ;
Novak, Petr .
CHEMISTRY OF MATERIALS, 2015, 27 (02) :526-536