Graphene Solution-Gated Field-Effect Transistor Array for Sensing Applications

被引:141
作者
Dankerl, Markus [1 ]
Hauf, Moritz V. [1 ]
Lippert, Andreas [1 ]
Hess, Lucas H. [1 ]
Birner, Stefan [1 ]
Sharp, Ian D. [1 ]
Mahmood, Ather [2 ]
Mallet, Pierre [2 ]
Veuillen, Jean-Yves [2 ]
Stutzmann, Martin [1 ]
Garrido, Jose A. [1 ]
机构
[1] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[2] Univ Grenoble 1, CNRS, Inst Neel, F-38042 Grenoble 9, France
关键词
DIAMOND/AQUEOUS ELECTROLYTE INTERFACE; DIAMOND THIN-FILMS; EPITAXIAL GRAPHENE; SURFACE CONDUCTIVITY; QUANTUM CAPACITANCE; DEVICES; NOISE; SCATTERING; GRAPHITE; SENSORS;
D O I
10.1002/adfm.201000724
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene, with its unique combination of physical and electronic properties, holds great promise for biosensor and bioelectronic applications. In this respect, the development of graphene solution-gated field-effect transistor (SGFET) arrays capable of operation in aqueous environments will establish the real potential of graphene in this rapidly emerging field. Here, we report on a facile route for the scalable fabrication of such graphene transistor arrays and provide a comprehensive characterization of their operation in aqueous electrolytes. An on-chip structure for Hall-effect measurements allows the direct determination of charge carrier concentrations and mobilities under electrolyte gate control. The effect of the solution-gate potential on the electronic properties of graphene is explained using a model that considers the microscopic structure of water at the graphene/electrolyte interface. The graphene SGFETs exhibit a high transconductance and correspondingly high sensitivity, together with an effective gate noise as low as tens of mu V. Our study demonstrates that graphene SGFETs, with their facile technology, high transconductance, and low noise promise to far outperform state-of-the-art Si-based devices for biosensor and bioelectronic applications.
引用
收藏
页码:3117 / 3124
页数:8
相关论文
共 49 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Solution-Gated Epitaxial Graphene as pH Sensor [J].
Ang, Priscilla Kailian ;
Chen, Wei ;
Wee, Andrew Thye Shen ;
Loh, Kian Ping .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (44) :14392-+
[3]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[4]   nextnano: General purpose 3-D simulations [J].
Birner, Stefan ;
Zibold, Tobias ;
Andlauer, Till ;
Kubis, Tillmann ;
Sabathil, Matthias ;
Trellakis, Alex ;
Vogl, Peter .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2137-2142
[5]   Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor [J].
Birner, Stefan ;
Uhl, Christian ;
Bayer, Michael ;
Vogl, Peter .
PHYSICS-BASED MATHEMATICAL MODELS FOR LOW-DIMENSIONAL SEMICONDUCTOR NANOSTRUCTURES: ANALYSIS AND COMPUTATION, 2008, 107
[6]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[7]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[10]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989