RF characterization of metal T-Gate structure in fully-depleted SOICMOS technology

被引:8
作者
Lam, S
Wan, H
Su, P
Wyatt, PW
Chen, CL
Niknejad, AM
Hu, CM
Ko, PK
Chan, MS
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] MIT, Lincoln Lab, Lexington, MA 02420 USA
关键词
fully-depleted SOI MOSFET; metal gate; RF CMOS; T-gate structure;
D O I
10.1109/LED.2003.810892
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The metal T-gate structure in fully-depleted (FD) silicon-on-insulator (SOI) MOSFET's is investigated from the RF perspective. With the expected low gate resistance R-G, the metal T-gate FD-SOI MOSFET achieves a higher f(max) of 67 GHz as compared with 12.5 GHz in the silicided polysilicon gate counterpart. However, the metal T-gate FD-SOI MOSFET has a lower f(T) of 35 GHz as compared with 44 GHz for the self-aligned polysilicon gate. The extracted parameters reveal that the T-gate structure results in an extra 40% and 80% increase in the parasitic capacitances C-gs and C-gd respectively. The metal gate structure together with the source-drain structure have to be co-optimized to boost the RF performance of FD-SOI MOSFET. A simple guideline to optimize the structure is included.
引用
收藏
页码:251 / 253
页数:3
相关论文
共 20 条
[11]  
MORIFUJU E, VLSI, P165
[12]   Direct extraction of the series equivalent circuit parameters for the small-signal model of SOI MOSFET's [J].
Raskin, JP ;
Dambrine, G ;
Gillon, R .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (12) :408-410
[13]   IMPACT OF DISTRIBUTED GATE RESISTANCE ON THE PERFORMANCE OF MOS DEVICES [J].
RAZAVI, B ;
YAN, RH ;
LEE, KF .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1994, 41 (11) :750-754
[14]   Tantalum nitride metal gate FD-SOI CMOS FETs using low resistivity self-grown bcc-tantalum layer [J].
Shimada, H ;
Ohshima, I ;
Ushiki, T ;
Sugawa, S ;
Ohmi, T .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (08) :1619-1626
[15]  
SZE SM, 1981, PHYSICS SEMICONDUCTO
[16]  
TANABE A, VLSI, P38
[17]   CMOS scaling into the nanometer regime [J].
Taur, Y ;
Buchanan, DA ;
Chen, W ;
Frank, DJ ;
Ismail, KE ;
Lo, SH ;
SaiHalasz, GA ;
Viswanathan, RG ;
Wann, HJC ;
Wind, SJ ;
Wong, HS .
PROCEEDINGS OF THE IEEE, 1997, 85 (04) :486-504
[18]   A dual-metal gate CMOS technology using nitrogen-concentration-controlled TiNx film [J].
Wakabayashi, H ;
Saito, Y ;
Takeuchi, K ;
Mogami, T ;
Kunio, T .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (10) :2363-2369
[19]   High performance damascene metal gate MOSFET's for 0.1 μm regime [J].
Yagishita, A ;
Saito, T ;
Nakajima, K ;
Inumiya, S ;
Akasaka, Y ;
Ozawa, Y ;
Hieda, K ;
Tsunashima, Y ;
Suguro, K ;
Arikado, T ;
Okumura, K .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (05) :1028-1034
[20]   Dynamic threshold voltage damascene metal gate MOSFET (DT-DMG-MOS) technology for very low voltage operation of under 0.7 V [J].
Yagishita, A ;
Saito, T ;
Inumiya, S ;
Matsuo, K ;
Tsunashima, Y ;
Suguro, K .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (03) :422-428