Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR

被引:67
作者
Arnold, Alexandre A. [1 ,2 ]
Genard, Bertrand [1 ,2 ]
Zito, Francesca [3 ,4 ]
Tremblay, Rejean [5 ,6 ]
Warschawski, Dror E. [3 ,4 ]
Marcotte, Isabelle [1 ,2 ]
机构
[1] Univ Quebec, Dept Chem, Montreal, PQ H3C 3P8, Canada
[2] Ressources Aquat Quebec, Montreal, PQ H3C 3P8, Canada
[3] Univ Paris Diderot, CNRS, Lab Biol Physicochim Proteines Membranaires, F-75005 Paris, France
[4] Inst Biol Physicochim, F-75005 Paris, France
[5] Univ Quebec, Inst Sci Mer, Rimouski, PQ G5L 3A1, Canada
[6] Ressources Aquat Quebec, Rimouski, PQ G5L 3A1, Canada
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2015年 / 1848卷 / 01期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Phytoplankton; Dynamic filter; Cell surface; Membrane; Organelle; Storage; ANGLE-SPINNING NMR; DYNAMIC NUCLEAR-POLARIZATION; FATTY-ACID-COMPOSITION; OCULATA CS 179; NANNOCHLOROPSIS-OCULATA; PAVLOVA-LUTHERI; CHLAMYDOMONAS-REINHARDTII; BIOCHEMICAL-COMPOSITION; SIGNAL ENHANCEMENT; AMINO-ACID;
D O I
10.1016/j.bbamem.2014.07.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microalgae are unicellular organisms in which plasma membrane is protected by a complex cell wall. The chemical nature of this barrier is important not only for taxonomic identification, but also for interactions with exogenous molecules such as contaminants. In this work, we have studied freshwater (Chlamydomonas reinhardtii) and marine (Pavlova lutheri and Nannochloropsis oculata) microalgae with different cell wall characteristics. C. reinhardtii is covered by a network of fibrils and glycoproteins, while P. lutheri is protected by small cellulose scales, and the picoplankton N. oculata by a rigid cellulose wall. The objective of this work was to determine to what extent the different components of these microorganisms (proteins, carbohydrates, lipids) can be distinguished by C-13 solid-state NMR with an emphasis on isolating the signature of their cell walls and membrane lipid constituents. By using NMR experiments which select rigid or mobile zones, as well as C-13-enriched microalgal cells, we improved the spectral resolution and simplified the highly crowded spectra. Interspecies differences in cell wall constituents, storage sugars and membrane lipid compositions were thus evidenced. Carbohydrates from the cell walls could be distinguished from those incorporated into sugar reserves or glycolipids. Lipids from the plasmalemma and organelle membranes and from storage vacuoles could also be identified. This work establishes a basis for a complete characterization of phytoplankton cells by solid-state NMR This article is part of a Special Issue entitled: NMR Spectroscopy for Atomistic Views of Biomembranes and Cell Surfaces. Guest Editors: Lynette Cegelski and David P. Weliky. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 60 条
[31]   Dynamics Characterization of Fully Hydrated Bacterial Cell Walls by Solid-State NMR: Evidence for Cooperative Binding of Metal Ions [J].
Kern, Thomas ;
Giffard, Mathilde ;
Hediger, Sabine ;
Amoroso, Ana ;
Giustini, Cecile ;
Bui, Nhat Khai ;
Joris, Bernard ;
Bougault, Catherine ;
Vollmer, Waldemar ;
Simorre, Jean-Pierre .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (31) :10911-10919
[32]   In Situ Solid-State NMR Spectroscopy of Protein in Heterogeneous Membranes: The Baseplate Antenna Complex of Chlorobaculum tepidum [J].
Kulminskaya, Natalia V. ;
Pedersen, Marie O. ;
Bjerring, Morten ;
Underhaug, Jarl ;
Miller, Mette ;
Frigaard, Niels-Ulrik ;
Nielsen, Jakob T. ;
Nielsen, Niels Chr. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (28) :6891-6895
[33]   Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179 [J].
Lin, Qiang ;
Gu, Na ;
Li, Gang ;
Lin, Junda ;
Huang, Liangmin ;
Tan, LingLing .
BIORESOURCE TECHNOLOGY, 2012, 111 :353-359
[34]   Solid-phase synthesis and 1H and 13C high-resolution magic angle spinning NMR of 13C-labeled resin-bound saccharides [J].
Loening, NM ;
Kanemitsu, T ;
Seeberger, PH ;
Griffin, RG .
MAGNETIC RESONANCE IN CHEMISTRY, 2004, 42 (05) :453-458
[35]  
Lohr M., 2009, CHLAMYDOMONAS SOURCE, V2, P799
[36]   Lipid class composition of the microalga Pavlova lutheri:: Eicosapentaenoic and docosahexaenoic acids [J].
Meireles, LA ;
Guedes, AC ;
Malcata, FX .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (08) :2237-2241
[37]   The Potential of Microalgae for the Production of Bioactive Molecules of Pharmaceutical Interest [J].
Mimouni, Virginie ;
Ulmann, Lionel ;
Pasquet, Virginie ;
Mathieu, Marie ;
Picot, Laurent ;
Bougaran, Gael ;
Cadoret, Jean-Paul ;
Morant-Manceau, Annick ;
Schoefs, Benoit .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2012, 13 (15) :2733-2750
[38]   Seasonal Variation of Lipids and Fatty Acids of the Microalgae Nannochloropsis oculata Grown in Outdoor Large-Scale Photobioreactors [J].
Olofsson, Martin ;
Lamela, Teresa ;
Nilsson, Emmelie ;
Berge, Jean Pascal ;
del Pino, Victoria ;
Uronen, Pauliina ;
Legrand, Catherine .
ENERGIES, 2012, 5 (05) :1577-1592
[39]   Quantitative one- and two-dimensional 13C spectra of microcrystalline proteins with enhanced intensity [J].
Purusottam, Rudra N. ;
Bodenhausen, Geoffrey ;
Tekely, Piotr .
JOURNAL OF BIOMOLECULAR NMR, 2013, 57 (01) :11-19
[40]  
Ramasamy Sakthivel Ramasamy Sakthivel, 2011, Journal of Experimental Sciences, V2, P29