Solution-processed transparent electrodes

被引:92
作者
Hecht, David S. [1 ]
Kaner, Richard B. [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA USA
关键词
GRAPHENE; CARBON; FILMS; EXFOLIATION; FABRICATION;
D O I
10.1557/mrs.2011.211
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Typically, materials with high electrical conductivity such as metals are opaque, and materials with high optical transparency such as glass are insulating. Finding materials that are both transparent to visible light and electrically conductive has proven to be a challenge. The need for such materials continues to grow, as many of today's popular devices such as liquid-crystal displays and organic light-emitting diodes in televisions, touch screens in phones or tablet computers, electrophoretic displays in e-readers, or solar cells on a roof require one or more layers to transmit visible light, while simultaneously applying a voltage or conducting a current. Today, the industry's need for such a material is serviced by various metal oxides, of which indium tin oxide (ITO) is by far the most common. The opto-electronic properties of ITO satisfy industry need for most devices; however, ITO has several drawbacks (e.g., brittle, expensive, and typically applied via costly sputtering techniques). To address these issues, recent advances in solution-processed nanomaterials have enabled several printable alternatives to sputtered ITO. These nanomaterials include conducting polymers, metallic nanostructures, ITO nanostructures, carbon nanotubes, and graphene. The ability to apply nanomaterials from the liquid phase opens the possibility to print these electronic materials roll-to-roll, greatly reducing cost and increasing yield and throughput, while the nanomaterial topology enables truly flexible devices.
引用
收藏
页码:749 / 755
页数:7
相关论文
共 55 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
NANO LETTERS, 2009, 9 (01) :167-172
[5]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[6]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[7]  
Cai WW., 2009, Applied Physics Letters, V95
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? [J].
De, Sukanta ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (05) :2713-2720
[10]   Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios [J].
De, Sukanta ;
Higgins, Thomas M. ;
Lyons, Philip E. ;
Doherty, Evelyn M. ;
Nirmalraj, Peter N. ;
Blau, Werner J. ;
Boland, John J. ;
Coleman, Jonathan N. .
ACS NANO, 2009, 3 (07) :1767-1774