An approximate KAM-renormalization-group scheme for Hamiltonian systems

被引:6
作者
Chandre, C
Jauslin, HR
Benfatto, G
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21011 Dijon, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
KAM theory; renormalization group; invariant tori; nontrivial fixed point;
D O I
10.1023/A:1004500514508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct an approximate renormalization scheme for Hamiltonian systems with two degrees of freedom. This scheme is a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. It makes the connection between the approximate renormalization procedure derived by Escande and Doveil and a systematic expansion of the transformation. In particular, we show that the two main approximations, consisting in keeping only the quadratic terms in the actions and the two main resonances, keep the essential information on the threshold of the breakup of invariant tori.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 19 条
[1]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[2]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[3]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[4]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[5]  
DAVENPORT H, 1983, HIGHER ARITHMETIC
[6]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[7]   THRESHOLD OF GLOBAL STOCHASTICITY AND UNIVERSALITY IN HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
MOHAMEDBENKADDA, MS ;
DOVEIL, F .
PHYSICS LETTERS A, 1984, 101 (07) :309-313
[8]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261
[9]  
GALLAVOTTI G, 1987, UNPUB
[10]  
Gallavotti G., 1983, ELEMENTS MECH