Nonvolatile switching in graphene field-effect devices

被引:138
作者
Echtermeyer, Tim J. [1 ]
Lemme, Max C. [1 ]
Baus, Matthias [1 ]
Szafranek, Bartholomaeus N. [1 ]
Geim, Andre K. [2 ]
Kurz, Heinrich [1 ]
机构
[1] AMO GmbH, AMICA, D-52074 Aachen, Germany
[2] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
关键词
field-effect transistor (FET); graphene; memory; MOSFET; nonvolatile; switch;
D O I
10.1109/LED.2008.2001179
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The absence of a band gap in graphene restricts its straightforward application as a channel material in field-effect transistors. In this letter, we report on a new approach to engineer a band gap in graphene field-effect devices (FEDs) by controlled structural modification of the graphene channel itself. The conductance in the FEDs is switched between a conductive "ON-state" and an insulating "OFF-state" with more than six orders of magnitude difference in conductance. Above a critical value of an electric field applied to the FED gate under certain environmental conditions, a chemical modification takes place to form insulating graphene derivatives. The effect can be reversed by electrical fields of opposite polarity or short current pulses to recover the initial state. These reversible switches could potentially be applied to nonvolatile memories and novel neuromorphic processing concepts.
引用
收藏
页码:952 / 954
页数:3
相关论文
共 22 条
  • [1] Carbon-based electronics
    Avouris, Phaedon
    Chen, Zhihong
    Perebeinos, Vasili
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (10) : 605 - 615
  • [2] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [3] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [4] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [5] ECHTENNEYER TJ, ARXIV07122026V1
  • [6] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    [J]. IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [7] A chemical route to graphene for device applications
    Gilje, Scott
    Han, Song
    Wang, Minsheng
    Wang, Kang L.
    Kaner, Richard B.
    [J]. NANO LETTERS, 2007, 7 (11) : 3394 - 3398
  • [8] Electronic transport properties of individual chemically reduced graphene oxide sheets
    Gomez-Navarro, Cristina
    Weitz, R. Thomas
    Bittner, Alexander M.
    Scolari, Matteo
    Mews, Alf
    Burghard, Marko
    Kern, Klaus
    [J]. NANO LETTERS, 2007, 7 (11) : 3499 - 3503
  • [9] Transport measurements across a tunable potential barrier in graphene
    Huard, B.
    Sulpizio, J. A.
    Stander, N.
    Todd, K.
    Yang, B.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (23)
  • [10] Epitaxial graphene transistors on SIC substrates
    Kedzierski, Jakub
    Hsu, Pei-Lan
    Healey, Paul
    Wyatt, Peter W.
    Keast, Craig L.
    Sprinkle, Mike
    Berger, Claire
    de Heer, Walt A.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (08) : 2078 - 2085