Experimental verification of numerically optimized photonic crystal injector, Y-splitter, and bend

被引:23
作者
Ayre, M [1 ]
Karle, TJ
Wu, LJ
Davies, T
Krauss, TF
机构
[1] Univ St Andrews, Microphoton & Photon Crystals Res Grp, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[2] Hong Kong Univ Sci & Technol, Inst Nanosci & Technol, Hong Kong, Hong Kong, Peoples R China
[3] Photon Design, Oxford OX4 1TW, England
关键词
chemically assisted ion beam etching (CAIBE); Fabry-Perot resonance; input coupling; numerical optimization; photonic crystals (PhCs);
D O I
10.1109/JSAC.2005.851169
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the experimental measurement of a photonic crystal (PhC) device comprising an injector, Y-splitter, and 60 degrees bend. The complete device consists of a 9-mu m-long injector tapering down from 5 pin into a triangular-lattice-of-holes single-line defect waveguide with period a = 430 mn and 36.2% air filling factor (corresponding to a radius over period (r/a) ratio of 0.30), an optimized Y-junction, 60 degrees bend and output injectors, with a total device footprint of 30 mu m. This is etched into a GaAs/AlGaAs heterostructure using chlorine/argon chemically assisted ion beam etching (CAME). An erbium-doped fiber amplifier (EDFA)-based source and Fabry-Perot technique are used to characterize the device. The device displays a bandwidth of approximately 110 nm in the 1.55 mu m window, and a transmission of 70% relative to the same length of 5-mu m-wide waveguide. This is compared with three-dimensional finite-difference time-domain (3-D FDTD) results, which have a bandwidth and transmission of 120 nm and 75%, respectively. The highlight of this paper is the close agreement of the numerically optimized complete microcircuit with its experimental equivalent, and the significant improvement in bandwidth over previous work on Y-junctions.
引用
收藏
页码:1390 / 1395
页数:6
相关论文
共 15 条
[1]   Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals [J].
Benisty, H ;
Olivier, S ;
Weisbuch, C ;
Agio, M ;
Kafesaki, M ;
Soukoulis, CM ;
Qiu, M ;
Swillo, M ;
Karlsson, A ;
Jaskorzynska, B ;
Talneau, A ;
Moosburger, J ;
Kamp, M ;
Forchel, A ;
Ferrini, R ;
Houdré, R ;
Oesterle, U .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) :770-785
[2]  
FELICI T, 2003, P ECOC IOOC, V5, P66
[3]   Photonic crystal tapers for ultracompact mode conversion [J].
Happ, TD ;
Kamp, M ;
Forchel, A .
OPTICS LETTERS, 2001, 26 (14) :1102-1104
[4]   Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra [J].
Hofstetter, D ;
Thornton, RL .
APPLIED PHYSICS LETTERS, 1998, 72 (04) :404-406
[5]   High-aspect-ratio chemically assisted ion-beam etching for photonic crystals using a high beam voltage-current ratio [J].
Kotlyar, MV ;
O'Faolain, L ;
Wilson, R ;
Krauss, TF .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (04) :1788-1791
[6]   Photonic crystal continuous taper for low-loss direct coupling into 2D photonic crystal channel waveguides and further device functionality [J].
Pottier, P ;
Ntakis, I ;
De La Rue, RM .
OPTICS COMMUNICATIONS, 2003, 223 (4-6) :339-347
[7]   High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide [J].
Prather, DW ;
Murakowski, J ;
Shi, SY ;
Venkataraman, S ;
Sharkawy, A ;
Chen, CH ;
Pustai, D .
OPTICS LETTERS, 2002, 27 (18) :1601-1603
[8]  
Sugimoto Y, 2004, IEICE T ELECTRON, VE87C, P316
[9]   Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length [J].
Sugimoto, Y ;
Tanaka, Y ;
Ikeda, N ;
Nakamura, Y ;
Asakawa, K ;
Inoue, K .
OPTICS EXPRESS, 2004, 12 (06) :1090-1096
[10]   AlGaAs-based two-dimensional photonic crystal slab with defect waveguides for planar lightwave circuit applications [J].
Sugimoto, Y ;
Ikeda, N ;
Carlsson, N ;
Asakawa, K ;
Kawai, N ;
Inoue, K .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) :760-769