Effect of electron-beam irradiation on graphene field effect devices

被引:161
作者
Childres, Isaac [1 ,2 ]
Jauregui, Luis A. [2 ,3 ]
Foxe, Michael [4 ]
Tian, Jifa [1 ,2 ]
Jalilian, Romaneh [1 ,2 ]
Jovanovic, Igor [4 ]
Chen, Yong P. [1 ,2 ,3 ]
机构
[1] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Electron beam irradiation - Electron-beam exposure - Electronic transport properties - Energetic electron - Field-effect devices - Graphene field effect transistor (GFETs) - Minimum conductivities - Suspended graphene;
D O I
10.1063/1.3502610
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electron beam exposure is a commonly used tool for fabricating and imaging graphene-based devices. Here, we present a study of the effects of electron-beam irradiation on the electronic transport properties of graphene and the operation of graphene field-effect transistors (GFETs). Exposure to a 30 keV electron-beam caused negative shifts in the charge-neutral point (CNP) of the GFET, interpreted as due to n-doping in the graphene from the interaction of the energetic electron beam with the substrate. The shift in the CNP is substantially reduced for suspended graphene devices. The electron beam is seen to also decrease the carrier mobilities and minimum conductivity, indicating defects created in the graphene. The findings are valuable for understanding the effects of radiation damage on graphene and for the development of radiation-hard graphene-based electronics. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3502610]
引用
收藏
页数:3
相关论文
共 20 条
[1]  
A K, 2007, Nat MAT, V6, P183
[2]   Electric carrier concentration in graphite: Dependence of electrical resistivity and magnetoresistance on defect concentration [J].
Arndt, A. ;
Spoddig, D. ;
Esquinazi, P. ;
Barzola-Quiquia, J. ;
Dusari, S. ;
Butz, T. .
PHYSICAL REVIEW B, 2009, 80 (19)
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[5]   Relativistic Positron Creation Using Ultraintense Short Pulse Lasers [J].
Chen, Hui ;
Wilks, Scott C. ;
Bonlie, James D. ;
Liang, Edison P. ;
Myatt, Jason ;
Price, Dwight F. ;
Meyerhofer, David D. ;
Beiersdorfer, Peter .
PHYSICAL REVIEW LETTERS, 2009, 102 (10)
[6]  
Claeys C., 2002, Radiation Effects in Advanced Semiconductor Materials and Devices, V57
[7]   Ion irradiation and defect formation in single layer graphene [J].
Compagnini, Giuseppe ;
Giannazzo, Filippo ;
Sonde, Sushant ;
Raineri, Vito ;
Rimini, Emanuele .
CARBON, 2009, 47 (14) :3201-3207
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]  
JALILIAN R, ARXIV10035404V1
[10]   Ion and electron irradiation-induced effects in nanostructured materials [J].
Krasheninnikov, A. V. ;
Nordlund, K. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (07)