Covalent Chemistry for Graphene Electronics

被引:121
作者
Niyogi, Sandip [1 ,3 ]
Bekyarova, Elena [1 ,3 ]
Hong, Jeongmin [4 ]
Khizroev, Sakhrat [3 ,4 ]
Berger, Claire [5 ,6 ]
de Heer, Walt [6 ]
Haddon, Robert C. [1 ,2 ,3 ]
机构
[1] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Ctr Nanoscale Sci & Engn, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[5] CNRS, Inst Neel, F-38042 Grenoble, France
[6] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2011年 / 2卷 / 19期
关键词
SCANNING-TUNNELING-MICROSCOPY; EPITAXIAL GRAPHENE; ELECTROCHEMICAL REDUCTION; REVERSIBLE HYDROGENATION; CHEMICAL-MODIFICATION; MAGNETIC-PROPERTIES; CARBON NANOTUBES; SINGLE; TRANSPORT; GRAPHITE;
D O I
10.1021/jz200426d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The atomically flat surface of graphene provides an opportunity to apply carbon-carbon bond-forming chemical reactions to engineer the electronic properties of graphene circuitry. In particular, covalent functionalization of the surface or the edge of graphene ribbons provides a novel way to introduce patterning that can modulate the energy band gap, affect electron scattering, and direct current flow by producing dielectric regions in a graphene wafer. We discuss the use of Raman spectroscopy and scanning tunneling microscopy to characterize the surface functionalization periodicities and densities that have been produced by the chemical derivatization of epitaxial graphene together with the concomitant changes in the electronic and magnetic properties of the graphene surface layer.
引用
收藏
页码:2487 / 2498
页数:12
相关论文
共 78 条
[1]   Electric carrier concentration in graphite: Dependence of electrical resistivity and magnetoresistance on defect concentration [J].
Arndt, A. ;
Spoddig, D. ;
Esquinazi, P. ;
Barzola-Quiquia, J. ;
Dusari, S. ;
Butz, T. .
PHYSICAL REVIEW B, 2009, 80 (19)
[2]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[3]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[4]   Sample size effects on the transport characteristics of mesoscopic graphite samples [J].
Barzola-Quiquia, J. ;
Yao, J. -L. ;
Roediger, P. ;
Schindler, K. ;
Esquinazi, P. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (12) :2924-2933
[5]   Chemical approach to the realization of electronic devices in epitaxial graphene [J].
Bekyarova, Elena ;
Itkis, Mikhail E. ;
Ramesh, Palanisamy ;
Haddon, Robert C. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (06) :184-186
[6]   Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups [J].
Bekyarova, Elena ;
Itkis, Mikhail E. ;
Ramesh, Palanisamy ;
Berger, Claire ;
Sprinkle, Michael ;
de Heer, Walt A. ;
Haddon, Robert C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) :1336-+
[7]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[8]   Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point [J].
Blake, P. ;
Yang, R. ;
Morozov, S. V. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Zhukov, A. A. ;
Nair, R. R. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Geim, A. K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1068-1071
[9]   Empirical Study of Hall Bars on Few-Layer Graphene on C-Face 4H-SiC [J].
Bolen, M. L. ;
Shen, T. ;
Gu, J. J. ;
Colby, R. ;
Stach, E. A. ;
Ye, P. D. ;
Capano, M. A. .
JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (12) :2696-2701
[10]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355