Defects in Cu(In,Ga)Se2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance

被引:150
作者
Cao, Qing [1 ]
Gunawan, Oki [1 ]
Copel, Matthew [1 ]
Reuter, Kathleen B. [1 ]
Chey, S. Jay [1 ]
Deline, Vaughn R. [2 ]
Mitzi, David B. [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] IBM Almaden Resesarch Ctr, San Jose, CA 95120 USA
关键词
CUIN1-XGAXSE2; SOLAR-CELLS; DEVICE PERFORMANCE; EFFICIENCY; INTERFACE; CUINSE2; FILMS; CDTE; TRANSPORT; BEHAVIOR; LAYER;
D O I
10.1002/aenm.201100344
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding defects in Cu(In,Ga)(Se,S)(2) (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga)(Cu)) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current-voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga)(Cu) defects on device PV performance is also established.
引用
收藏
页码:845 / 853
页数:9
相关论文
共 72 条
[51]   Secondary barriers in CdS-CuIn1-xGaxSe2 solar cells -: art. no. 064901 [J].
Pudov, AO ;
Kanevce, A ;
Al-Thani, HA ;
Sites, JR ;
Hasoon, FS .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
[52]   Near-surface defect distributions in Cu(In,Ga)Se2 [J].
Rockett, A ;
Liao, D ;
Heath, JT ;
Cohen, JD ;
Strzhemechny, YM ;
Brillson, LJ ;
Ramanathan, K ;
Shafarman, WN .
THIN SOLID FILMS, 2003, 431 :301-306
[53]   Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells [J].
Romeo, A ;
Terheggen, A ;
Abou-Ras, D ;
Bätzner, DL ;
Haug, FJ ;
Kälin, M ;
Rudmann, D ;
Tiwari, AN .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :93-111
[54]  
ROY M, 1988, 20 IEEE PHOT SPEC C, V2, P1618
[55]   Effects of annealing under various atmospheres on electrical properties of Cu(In,Ga)Se2 films and CdS/Cu(In,Ga)Se2 heterostructures [J].
Sakurai, T. ;
Ishida, N. ;
Ishizuka, S. ;
Islam, M. M. ;
Kasai, A. ;
Matsubara, K. ;
Sakurai, K. ;
Yamada, A. ;
Akimoto, K. ;
Niki, S. .
THIN SOLID FILMS, 2008, 516 (20) :7036-7040
[56]   Dependence of Se beam pressure on defect states in CIGS-based solar cells [J].
Sakurai, T. ;
Islam, M. M. ;
Uehigashi, H. ;
Ishizuka, S. ;
Yamada, A. ;
Matsubara, K. ;
Niki, S. ;
Akimoto, K. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (01) :227-230
[57]   CHALCOPYRITE DEFECT CHALCOPYRITE HETEROJUNCTIONS ON THE BASIS OF CUINSE2 [J].
SCHMID, D ;
RUCKH, M ;
GRUNWALD, F ;
SCHOCK, HW .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (06) :2902-2909
[58]   Photovoltaic technology: The case for thin-film solar cells [J].
Shah, A ;
Torres, P ;
Tscharner, R ;
Wyrsch, N ;
Keppner, H .
SCIENCE, 1999, 285 (5428) :692-698
[59]   The electronic structure of chalcopyrites-bands, point defects and grain boundaries [J].
Siebentritt, Susanne ;
Igalson, Malgorzata ;
Persson, Clas ;
Lany, Stephan .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (06) :390-410
[60]   ATOMIC RADII IN CRYSTALS [J].
SLATER, JC .
JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (10) :3199-&