Development and validation of a BEAMnrc component module for accurate Monte Carlo modelling of the Varian dynamic Millennium multileaf collimator

被引:66
作者
Heath, E [1 ]
Seuntjens, J [1 ]
机构
[1] McGill Univ, Med Phys Unit, Montreal, PQ M3G 1A4, Canada
关键词
D O I
10.1088/0031-9155/48/24/004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A new component module (CM), designated DYNVMLC, was developed to fully model the geometry of the Varian Millennium 120 leaf collimator using the BEAMnrc Monte Carlo code. The model includes details such as the leaf driving screw hole, support railing groove and leaf tips. Further modifications also allow sampling of leaf sequence files to simulate the movement of the multileaf collimator (MLC) leaves during an intensity modulated radiation therapy (IMRT) delivery. As an initial validation of the code, the individual leaf geometries were visualized by tracing particles through the component module and recording their position each time a leaf boundary was crossed. A model of the Varian CL21EX linear accelerator 6 MV photon beam incorporating the new CM was built with the BEAMnrc user code. The leaf material density and abutting leaf air gap were chosen to match simulated leaf leakage profiles with film measurements in a solid water phantom. Simulated depth dose and off-axis profiles for a variety of MLC defined static fields agreed to within 2% with ion chamber and diode measurements in a water phantom. Simulated dose distributions for IMRT intensity patterns delivered using both static and dynamic techniques were found to agree with film measurements to within 4%. A comparison of interleaf leakage profiles for the new CM and an equivalent leaf model using the existing VARMLC CM demonstrated that the simplified geometry of VARMLC is not able to accurately predict the details of the MLC leakage for the 120 leaf collimator.
引用
收藏
页码:4045 / 4063
页数:19
相关论文
共 29 条
[1]   COLLAPSED CONE CONVOLUTION OF RADIANT ENERGY FOR PHOTON DOSE CALCULATION IN HETEROGENEOUS MEDIA [J].
AHNESJO, A .
MEDICAL PHYSICS, 1989, 16 (04) :577-592
[2]   The impact of electron transport on the accuracy of computed dose [J].
Arnfield, MR ;
Siantar, CH ;
Siebers, J ;
Garmon, P ;
Cox, L ;
Mohan, R .
MEDICAL PHYSICS, 2000, 27 (06) :1266-1274
[3]   A method for determining multileaf collimator transmission and scatter for dynamic intensity modulated radiotherapy [J].
Arnfield, MR ;
Siebers, JV ;
Kim, JO ;
Wu, QW ;
Keall, PJ ;
Mohan, R .
MEDICAL PHYSICS, 2000, 27 (10) :2231-2241
[4]  
Boyer A, 2001, 72 AAPM RAD THER COM
[5]   Geometric analysis of light-field position of a multileaf collimator with curved ends [J].
Boyer, AL ;
Li, SD .
MEDICAL PHYSICS, 1997, 24 (05) :757-762
[6]   Intensity-modulated radiotherapy: Current status and issues of interest [J].
Boyer, AL ;
Butler, EB ;
DiPetrillo, TA ;
Engler, MJ ;
Fraass, B ;
Grant, W ;
Ling, CC ;
Low, DA ;
Mackie, TR ;
Mohan, R ;
Purdy, JA ;
Roach, M ;
Rosenman, JG ;
Verhey, LJ ;
Wong, JW ;
Cumberlin, RL ;
Stone, H ;
Palta, JR .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (04) :880-914
[7]  
Briesmeister J.F, 1997, MCNP GEN MONTE CARLO
[8]   Calculation of x-ray transmission through a multileaf collimator [J].
Chen, Y ;
Boyer, AL ;
Ma, CM .
MEDICAL PHYSICS, 2000, 27 (08) :1717-1726
[9]   Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams [J].
De Vlamynck, K ;
Palmans, H ;
Verhaegen, F ;
De Wagter, C ;
De Neve, W ;
Thierens, H .
MEDICAL PHYSICS, 1999, 26 (09) :1874-1882
[10]   The MLC tongue-and-groove effect on IMRT dose distributions [J].
Deng, J ;
Pawlicki, T ;
Chen, Y ;
Li, JS ;
Jiang, SB ;
Ma, CM .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (04) :1039-1060