Dimensional Hausdorff properties of singular continuous spectra

被引:45
作者
Jitomirskaya, SY [1 ]
Last, Y [1 ]
机构
[1] CALTECH,DIV PHYS MATH & ASTRON,PASADENA,CA 91125
关键词
D O I
10.1103/PhysRevLett.76.1765
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an extension of the Gilbert-Pearson theory of subordinacy, which relates dimensional Hausdorff spectral properties of one-dimensional Schrodinger operators to the behavior of solutions of the corresponding Schrodinger equation. We use this theory to analyze these properties for several examples having the singular-continuous spectrum, including sparse barrier potentials, the almost Mathieu operator and the Fibonacci Hamiltonian.
引用
收藏
页码:1765 / 1769
页数:5
相关论文
共 38 条
[11]  
GESZTESY F, IN PRESS XI FUNCTION
[12]   ON SUBORDINACY AND ANALYSIS OF THE SPECTRUM OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS [J].
GILBERT, DJ ;
PEARSON, DB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 128 (01) :30-56
[14]   DETERMINISTIC POTENTIAL WITH A PURE POINT SPECTRUM [J].
GORDON, AY .
MATHEMATICAL NOTES, 1990, 48 (5-6) :1197-1203
[15]   PURE POINT SPECTRUM UNDER 1-PARAMETER PERTURBATIONS AND INSTABILITY OF ANDERSON LOCALIZATION [J].
GORDON, AY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (03) :489-505
[16]   ELECTRONIC SPECTRAL AND WAVE-FUNCTION PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS - A SCALING APPROACH [J].
HIRAMOTO, H ;
KOHMOTO, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (3-4) :281-320
[17]   OPERATORS WITH SINGULAR CONTINUOUS-SPECTRUM .3. ALMOST-PERIODIC SCHRODINGER-OPERATORS [J].
JITOMIRSKAYA, S ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :201-205
[18]  
JITOMIRSKAYA S, IN PRESS
[19]   ANDERSON LOCALIZATION FOR THE ALMOST MATHIEU EQUATION .2. POINT SPECTRUM FOR LAMBDA-GREATER-THAN-2 [J].
JITOMIRSKAYA, SY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (03) :563-570
[20]   ANDERSON LOCALIZATION FOR THE ALMOST MATHIEU EQUATION - A NONPERTURBATIVE PROOF [J].
JITOMIRSKAYA, SY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :49-57