Dimensional Hausdorff properties of singular continuous spectra

被引:45
作者
Jitomirskaya, SY [1 ]
Last, Y [1 ]
机构
[1] CALTECH,DIV PHYS MATH & ASTRON,PASADENA,CA 91125
关键词
D O I
10.1103/PhysRevLett.76.1765
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an extension of the Gilbert-Pearson theory of subordinacy, which relates dimensional Hausdorff spectral properties of one-dimensional Schrodinger operators to the behavior of solutions of the corresponding Schrodinger equation. We use this theory to analyze these properties for several examples having the singular-continuous spectrum, including sparse barrier potentials, the almost Mathieu operator and the Fibonacci Hamiltonian.
引用
收藏
页码:1765 / 1769
页数:5
相关论文
共 38 条
[21]  
Kahn S., 1992, HELV PHYS ACTA, V65, P505
[22]   SLOW DECAY OF TEMPORAL CORRELATIONS IN QUANTUM-SYSTEMS WITH CANTOR SPECTRA [J].
KETZMERICK, R ;
PETSCHEL, G ;
GEISEL, T .
PHYSICAL REVIEW LETTERS, 1992, 69 (05) :695-698
[23]  
KIRSCH W, 1990, FUNCT ANAL APPL+, V24, P176
[24]   ZERO MEASURE SPECTRUM FOR THE ALMOST MATHIEU OPERATOR [J].
LAST, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (02) :421-432
[25]   A RELATION BETWEEN AC SPECTRUM OF ERGODIC JACOBI MATRICES AND THE SPECTRA OF PERIODIC APPROXIMANTS [J].
LAST, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (01) :183-192
[26]  
LAST Y, IN PRESS J FUNCT ANA
[27]   ANALYTICAL RESULTS FOR SCALING PROPERTIES OF THE SPECTRUM OF THE FIBONACCI CHAIN [J].
PIECHON, F ;
BENAKLI, M ;
JAGANNATHAN, A .
PHYSICAL REVIEW LETTERS, 1995, 74 (26) :5248-5251
[28]  
Reed M., 1980, METHODS MODERN MATH
[29]  
REMLING C, IN PRESS RELATIONSHI
[30]   THE ANALYSIS OF ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE [J].
ROGERS, CA ;
TAYLOR, SJ .
ACTA MATHEMATICA, 1959, 101 (3-4) :273-302