Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach

被引:684
作者
Metzler, R [1 ]
Barkai, E
Klafter, J
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Phys, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1103/PhysRevLett.82.3563
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a fractional Fokker-Planck equation describing the stochastic evolution of a particle under the combined influence of an external, nonlinear force and a thermal heat bath. For the force-free case, a subdiffusive behavior is recovered. The equation is shown to obey generalized Einstein relations, and its stationary solution is the Boltzmann distribution. The relaxation of single modes is shown to follow a Mittag-Leffler decay. We discuss the example of a particle in a harmonic potential. [S0031-9007(99)09071-7].
引用
收藏
页码:3563 / 3567
页数:5
相关论文
共 31 条
[11]   FOX FUNCTION REPRESENTATION OF NON-DEBYE RELAXATION PROCESSES [J].
GLOCKLE, WG ;
NONNENMACHER, TF .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) :741-757
[12]   EXACT-SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM-WALKS [J].
HILFER, R .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (01) :211-216
[13]   Levy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions [J].
Jespersen, S ;
Metzler, R ;
Fogedby, HC .
PHYSICAL REVIEW E, 1999, 59 (03) :2736-2745
[14]  
Keith Oldham., 1974, FRACTIONAL CALCULUS
[15]   STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION [J].
KLAFTER, J ;
BLUMEN, A ;
SHLESINGER, MF .
PHYSICAL REVIEW A, 1987, 35 (07) :3081-3085
[16]   NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects [J].
Klemm, A ;
Muller, HP ;
Kimmich, R .
PHYSICAL REVIEW E, 1997, 55 (04) :4413-4422
[17]   Local fractional Fokker-Planck equation [J].
Kolwankar, KM ;
Gangal, AD .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :214-217
[18]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[19]   Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended [J].
Metzler, R ;
Klafter, J ;
Sokolov, IM .
PHYSICAL REVIEW E, 1998, 58 (02) :1621-1633
[20]   FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION [J].
METZLER, R ;
GLOCKLE, WG ;
NONNENMACHER, TF .
PHYSICA A, 1994, 211 (01) :13-24