Simple example of partial synchronization of chaotic systems

被引:72
作者
Hasler, M [1 ]
Maistrenko, Y
Popovych, O
机构
[1] Swiss Fed Inst Technol, Dept Elect Engn, EPFL, CH-1015 Lausanne, Switzerland
[2] Natl Acad Sci Ukraine, Inst Math, UA-252601 Kiev, Ukraine
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 05期
关键词
D O I
10.1103/PhysRevE.58.6843
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A system of three nonsymmetrically coupled skew tent maps is considered. It is shown that in a large region of the parameter space, partial chaotic synchronization takes place. This means that two variables synchronize, while the third does not synchronize with the first two, and while the global motion is chaotic. The different bifurcations that lead to this behavior, as well as to its disappearance, are discussed. [S1063-651X(98)01011-3].
引用
收藏
页码:6843 / 6846
页数:4
相关论文
共 12 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[3]  
DEMELO W, 1993, ONE DIMENSIONAL DYNA
[4]   An introduction to the synchronization of chaotic systems: Coupled skew tent maps [J].
Hasler, M ;
Maistrenko, YL .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) :856-866
[5]   CLUSTERING, CODING, SWITCHING, HIERARCHICAL ORDERING, AND CONTROL IN A NETWORK OF CHAOTIC ELEMENTS [J].
KANEKO, K .
PHYSICA D, 1990, 41 (02) :137-172
[6]   Different types of chaos synchronization in two coupled piecewise linear maps [J].
Maistrenko, Y ;
Kapitaniak, T .
PHYSICAL REVIEW E, 1996, 54 (04) :3285-3292
[7]   Locally and globally riddled basins in two coupled piecewise-linear maps [J].
Maistrenko, Y ;
Kapitaniak, T ;
Szuminski, P .
PHYSICAL REVIEW E, 1997, 56 (06) :6393-6399
[8]   Role of the absorbing area in chaotic synchronization [J].
Maistrenko, YL ;
Maistrenko, VL ;
Popovich, A ;
Mosekilde, E .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1638-1641
[9]  
Mira C., 1996, Nonlinear Science, DOI DOI 10.1142/2252
[10]   Weak and strong synchronization of chaos [J].
Pyragas, K .
PHYSICAL REVIEW E, 1996, 54 (05) :R4508-R4511