Micromachined atomic force microscopy sensor with integrated piezoresistive, sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes

被引:85
作者
Pedrak, R [1 ]
Ivanov, T
Ivanova, K
Gotszalk, T
Abedinov, N
Rangelow, IW
Edinger, K
Tomerov, E
Schenkel, T
Hudek, P
机构
[1] Univ Kassel, IMA, Inst Microstruct Technol & Analyt, D-34109 Kassel, Germany
[2] NaWoTec GmbH, D-64380 Rossdorf, Germany
[3] NTS Ltd, Botevgrad 2140, Bulgaria
[4] Univ Calif Berkeley, LBNL, Berkeley, CA 94270 USA
[5] Leica Microsyst Lithog GmbH, D-07745 Jena, Germany
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2003年 / 21卷 / 06期
关键词
D O I
10.1116/1.1614252
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article describes microprobes for noncontact scanning force microscopy that make use of a direct-oscillating thermally driven bimorph actuator with integrated piezoresistive readout sensor. The sensitivity has been increased using direct current for biasing and alternating current for exciting the thermally driven cantilever in a higher flexural mode. The cantilever operates in the phase-shift atomic force microscopy (AFM) detection technique. The main advantage of phase imaging is the higher z resolution at high scan rates and much lower forces than in height imaging with contact AFM. Critical dimensions measurements illustrating the imaging capability And resolution of our new scanning proximal probe are demonstrated. (C) 2003 American Vacuum Society.
引用
收藏
页码:3102 / 3107
页数:6
相关论文
共 26 条
[1]   Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection [J].
Abedinov, N ;
Grabiec, P ;
Gotszalk, T ;
Ivanov, T ;
Voigt, J ;
Rangelow, IW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2001, 19 (06) :2884-2888
[2]   Evaluation and fabrication of AFM array for ESA-Midas /Rosetta space mission [J].
Barth, W ;
Debski, T ;
Abedinov, N ;
Ivanov, T ;
Heerlein, H ;
Volland, B ;
Gotszalk, T ;
Rangelow, IW ;
Torkar, K ;
Fritzenwallner, K ;
Grabiec, P ;
Studzinska, K ;
Kostic, I ;
Hudek, P .
MICROELECTRONIC ENGINEERING, 2001, 57-8 :825-831
[3]   THERMALLY ACTUATED CMOS MICROMIRRORS [J].
BUHLER, J ;
FUNK, J ;
PAUL, O ;
STEINER, FP ;
BALTES, H .
SENSORS AND ACTUATORS A-PHYSICAL, 1995, 47 (1-3) :572-575
[4]   Sensitivity of vibration modes of atomic force microscope cantilevers in continuous surface contact [J].
Chang, WJ .
NANOTECHNOLOGY, 2002, 13 (04) :510-514
[5]   Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J].
Chui, BW ;
Stowe, TD ;
Ju, YS ;
Goodson, KE ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Ried, RP ;
Rugar, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :69-78
[6]  
Despont M., 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308), P126, DOI 10.1109/MEMSYS.2000.838502
[7]   APPLICATION OF LEAD-ZIRCONATE-TITANATE THIN-FILM DISPLACEMENT SENSORS FOR THE ATOMIC-FORCE MICROSCOPE [J].
FUJII, T ;
WATANABE, S ;
SUZUKI, M ;
FUJIU, T .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (03) :1119-1122
[8]   PIEZORESISTIVE CANTILEVERS UTILIZED FOR SCANNING TUNNELING AND SCANNING FORCE MICROSCOPE IN ULTRAHIGH-VACUUM [J].
GIESSIBL, FJ ;
TRAFAS, BM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (06) :1923-1929
[9]   Noncontact scanning force microscopy using a direct-oscillating piezoelectric microcantilever [J].
Itoh, T ;
Ohashi, T ;
Suga, T .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (03) :1577-1581
[10]   Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O-3 microcantilever for dynamic scanning force microscopy [J].
Itoh, T ;
Lee, C ;
Suga, T .
APPLIED PHYSICS LETTERS, 1996, 69 (14) :2036-2038