Temporal scaling at feigenbaum points and nonextensive thermodynamics

被引:27
作者
Grassberger, P [1 ]
机构
[1] Forschungszentrum Julich, John Von Neumann Inst Comp, D-52425 Julich, Germany
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
关键词
D O I
10.1103/PhysRevLett.95.140601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that recent claims for the nonstationary behavior of the logistic map at the Feigenbaum point based on nonextensive thermodynamics are either incorrect or can be easily deduced from well-known properties of the Feigenbaum attractor. In particular, there is no generalized Pesin identity for this system, the existing attempts at proofs being based on misconceptions about basic notions of ergodic theory. In deriving several new scaling laws of the Feigenbaum attractor, thorough use is made of its detailed structure, but there is no obvious connection to nonextensive thermodynamics.
引用
收藏
页数:4
相关论文
共 35 条
[21]  
Kozachenko L. F., 1987, Problems of Information Transmission, V23, P95
[22]   The rate of entropy increase at the edge of chaos [J].
Latora, V ;
Baranger, M ;
Rapisarda, A ;
Tsallis, C .
PHYSICS LETTERS A, 2000, 273 (1-2) :97-103
[23]   Nonextensivity and multifractality in low-dimensional dissipative systems [J].
Lyra, ML ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (01) :53-56
[24]   The complexity of the logistic map at the chaos threshold [J].
Montangero, S ;
Fronzoni, L ;
Girgolini, P .
PHYSICS LETTERS A, 2001, 285 (1-2) :81-87
[25]   Reply to "Comment on 'Critique of q-entropy for thermal statistics' " -: art. no. 038102 [J].
Nauenberg, M .
PHYSICAL REVIEW E, 2004, 69 (03) :038102-1
[26]   Critique of q-entropy for thermal statistics -: art. no. 036114 [J].
Nauenberg, M .
PHYSICAL REVIEW E, 2003, 67 (03) :1-036114
[27]  
PICKANDS J, 1975, ANN STAT, V3, P119
[28]   Generalization of the Kolmogorov-Sinai entropy: logistic-like and generalized cosine maps at the chaos threshold [J].
Tirnakli, U ;
Ananos, GFJ ;
Tsallis, C .
PHYSICS LETTERS A, 2001, 289 (1-2) :51-58
[29]  
TONELLI R, CONDMAT0403360
[30]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487