Tip-sample distance control for near-field scanning microwave microscopes

被引:21
作者
Kim, MS
Kim, S
Kim, J
Lee, K
Friedman, B
Kim, JT
Lee, J
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Sam Houston State Univ, Dept Phys, Huntsville, TX 77341 USA
[3] Korea Res Inst Standd & Sci, Taejon 305600, South Korea
[4] Elect & Telecommun Res Inst, Taejon 305350, South Korea
关键词
D O I
10.1063/1.1589162
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We demonstrate a near-field scanning microwave microscope (NSMM) which uses a tuning fork shear-force feedback method to control the distance between tip and sample. This distance control method is independent of local microwave characteristics. The probe tip for the NSMM is attached to one prong of a quartz tuning fork and directly coupled to a high-quality microstrip resonator with a dielectric resonator at an operating frequency of f=4.5-5.5 GHz. The amplitude of the tuning fork was used as a distance control parameter in the feedback system. To demonstrate the ability of the distance regulation system, we present topographic images of an uneven conducting metal sample and compare the height response and the NSMM image. (C) 2003 American Institute of Physics.
引用
收藏
页码:3675 / 3678
页数:4
相关论文
共 18 条
[1]   Near-field scanning microwave probe based on a dielectric resonator [J].
Abu-Teir, M ;
Golosovsky, M ;
Davidov, D ;
Frenkel, A ;
Goldberger, H .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) :2073-2079
[2]   Experimental demonstration for scanning near-field optical microscopy using a metal micro-slit probe at millimeter wavelengths [J].
Bae, J ;
Okamoto, T ;
Fujii, T ;
Mizuno, K ;
Nozokido, T .
APPLIED PHYSICS LETTERS, 1997, 71 (24) :3581-3583
[3]   COMBINED SHEAR FORCE AND NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
FINN, PL ;
WEINER, JS .
APPLIED PHYSICS LETTERS, 1992, 60 (20) :2484-2486
[4]   Scanning nonlinear dielectric microscopy with nanometer resolution [J].
Cho, Y ;
Kazuta, S ;
Matsuura, K .
APPLIED PHYSICS LETTERS, 1999, 75 (18) :2833-2835
[5]   Imaging microwave electric fields using a near-field scanning microwave microscope [J].
Dutta, SK ;
Vlahacos, CP ;
Steinhauer, DE ;
Thanawalla, AS ;
Feenstra, BJ ;
Wellstood, FC ;
Anlage, SM ;
Newman, HS .
APPLIED PHYSICS LETTERS, 1999, 74 (01) :156-158
[6]   High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope [J].
Gao, C ;
Wei, T ;
Duewer, F ;
Lu, YL ;
Xiang, XD .
APPLIED PHYSICS LETTERS, 1997, 71 (13) :1872-1874
[7]   Novel millimeter-wave near-field resistivity microscope [J].
Golosovsky, M ;
Davidov, D .
APPLIED PHYSICS LETTERS, 1996, 68 (11) :1579-1581
[8]   DESIGN AND IMPLEMENTATION OF A LOW-TEMPERATURE NEAR-FIELD SCANNING OPTICAL MICROSCOPE [J].
GROBER, RD ;
HARRIS, TD ;
TRAUTMAN, JK ;
BETZIG, E .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (03) :626-631
[9]   Improved surface imaging with a near-field scanning microwave microscope using a tunable resonator [J].
Hong, S ;
Kim, J ;
Park, W ;
Lee, K .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :524-526
[10]   Spatially resolved microwave field distribution in YBaCuO disk resonators visualized by laser scanning [J].
Kaiser, T ;
Hein, MA ;
Müller, G ;
Perpeet, M .
APPLIED PHYSICS LETTERS, 1998, 73 (23) :3447-3449