Bypassing the Kohn-Sham equations with machine learning

被引:525
作者
Brockherde, Felix [1 ,2 ]
Vogt, Leslie [3 ]
Li, Li [4 ]
Tuckerman, Mark E. [3 ,5 ,6 ]
Burke, Kieron [4 ,7 ]
Mueller, Klaus-Robert [1 ,8 ,9 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[2] Max Planck Inst Mikrostrukturphys, Weinberg 2, D-06120 Halle, Germany
[3] NYU, Dept Chem, New York, NY 10003 USA
[4] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[5] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[6] NYU Shanghai, NYU ECNU Ctr Computat Chem, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
[7] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[8] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
[9] Max Planck Inst Informat, Stuhlsatzenhausweg, D-66123 Saarbrucken, Germany
基金
美国国家科学基金会;
关键词
DENSITY; PSEUDOPOTENTIALS; ENERGY; APPROXIMATION; SPACE; DFT;
D O I
10.1038/s41467-017-00839-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.
引用
收藏
页数:10
相关论文
共 65 条
[51]  
Snyder J.C., 2013, Empir. Inference: Festschr. Honor Vladimir N. Vapnik, P245
[52]   Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives [J].
Snyder, John C. ;
Rupp, Matthias ;
Mueller, Klaus-Robert ;
Burke, Kieron .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1102-1114
[53]   Orbital-free bond breaking via machine learning [J].
Snyder, John C. ;
Rupp, Matthias ;
Hansen, Katja ;
Blooston, Leo ;
Mueller, Klaus-Robert ;
Burke, Kieron .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (22)
[54]   Finding Density Functionals with Machine Learning [J].
Snyder, John C. ;
Rupp, Matthias ;
Hansen, Katja ;
Mueller, Klaus-Robert ;
Burke, Kieron .
PHYSICAL REVIEW LETTERS, 2012, 108 (25)
[55]   EFFICIENT PSEUDOPOTENTIALS FOR PLANE-WAVE CALCULATIONS [J].
TROULLIER, N ;
MARTINS, JL .
PHYSICAL REVIEW B, 1991, 43 (03) :1993-2006
[56]   REVERSIBLE MULTIPLE TIME SCALE MOLECULAR-DYNAMICS [J].
TUCKERMAN, M ;
BERNE, BJ ;
MARTYNA, GJ .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (03) :1990-2001
[57]   Heavy-atom skeleton quantization and proton tunneling in "intermediate-barrier" hydrogen bonds [J].
Tuckerman, ME ;
Marx, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (21) :4946-4949
[58]   Exploiting multiple levels of parallelism in Molecular Dynamics based calculations via modern techniques and software paradigms on distributed memory computers [J].
Tuckerman, ME ;
Yarne, DA ;
Samuelson, SO ;
Hughes, AL ;
Martyna, GJ .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 128 (1-2) :333-376
[59]   QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J].
VandeVondele, J ;
Krack, M ;
Mohamed, F ;
Parrinello, M ;
Chassaing, T ;
Hutter, J .
COMPUTER PHYSICS COMMUNICATIONS, 2005, 167 (02) :103-128
[60]   An efficient orbital transformation method for electronic structure calculations [J].
VandeVondele, J ;
Hutter, J .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (10) :4365-4369