Small animal computed tomography Imaging

被引:48
作者
Bartling, Soenke H.
Stiller, Wolfram
Semmler, Wolfhard
Kiessling, Fabian
机构
[1] Deutsch Krebsforschungszentrum, Mol Imaging Grp, Dept Med Phys Radiol, D-69120 Heidelberg, Germany
[2] Deutsch Krebsforschungszentrum, Jr Grp Mol Imaging, D-69120 Heidelberg, Germany
关键词
small animal imaging; Computed Tomography (CT); micro-CT; mini-CT; flat-panel detector; motion gating;
D O I
10.2174/157340507779940327
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Micro Computed Tomography (micro-CT) was suggested in biomedical research to investigate tissues and small animals. Its use to characterize bone structures. vessels (e.g. tumor vascularization), tumors and soft tissues such as lung parenchyma has been shown. When co-registered, micro-CT can add structural information to other small animal imaging modalities. However, due to fundamental CT principles, high-resolution imaging with micro-CT demands for high x-ray doses and long scan times to generate a sufficiently high signal-to-noise ratio. Long scan times in turn make the use of extravascular contrast agents difficult. Recently introduced flat-panel based mini-CT systems offer a valuable trade-off between resolution (similar to 200 mu m), scan time (0.5 s), applied x-ray dose and scan field-of-view. This allows for angiography scans and follow-up examinations using iodinated contrast agents having a similar performance compared to patient scans. Furthermore, dynamic examinations such as perfusion studies as well as retrospective motion gating are currently implemented using flat-panel CT. This review summarizes applications of experimental CT in basic research and provides an overview of current hardware developments making CT a powerful toot to stud), tissue morphology and function in small laboratory animals such as rodents.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 76 条
[31]   Long-residence-time nano-scale liposomal lohexol for X-ray-based blood pool imaging [J].
Kao, CY ;
Hoffman, EA ;
Beck, KC ;
Bellamkonda, RV ;
Annapragada, AV .
ACADEMIC RADIOLOGY, 2003, 10 (05) :475-483
[32]   Compact CT/SPECT small-animal imaging system [J].
Kastis, GA ;
Furenlid, LR ;
Wilson, DW ;
Peterson, TE ;
Barber, HB ;
Barrett, HH .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (01) :63-67
[33]   High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: Correlation with histology [J].
Kennel, SJ ;
Davis, IA ;
Branning, J ;
Pan, HJ ;
Kabalka, GW ;
Paulus, MJ .
MEDICAL PHYSICS, 2000, 27 (05) :1101-1107
[34]   CT imaging of intrathoracic lymph nodes in dogs with bronchoscopically administered iodinated nanoparticles [J].
Ketai, LH ;
Muggenberg, BA ;
McIntire, GL ;
Bacon, ER ;
Rosenberg, R ;
Losco, PE ;
Toner, JL ;
Nikula, KJ ;
Haley, P .
ACADEMIC RADIOLOGY, 1999, 6 (01) :49-54
[35]  
KHODAVERDI M, 2001, IEEE NUCL SCI S, P3
[36]   Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis [J].
Kiessling, F ;
Greschus, S ;
Lichy, MP ;
Bock, M ;
Fink, C ;
Vosseler, S ;
Moll, J ;
Mueller, MM ;
Fusenig, NE ;
Traupe, H ;
Semmler, W .
NATURE MEDICINE, 2004, 10 (10) :1133-1138
[37]   Construction and characterization of an amorphous silicon flat-panel detector based on ion-shower doping process [J].
Kim, HJ ;
Kim, HK ;
Choa, G ;
Choi, J .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 505 (1-2) :155-158
[38]  
KIM HK, 2003, IEEE NUCL SCI S, V3, P2108
[39]   Characteristics and applications of a flat panel computer tomography system [J].
Knollmann, F. ;
Valencia, R. ;
Buhk, J. -H. ;
Obenauer, S. .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2006, 178 (09) :862-871
[40]  
Kohlbrenner A, 2001, ADV EXP MED BIOL, V496, P213