Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires

被引:449
作者
Schmidt, V. [1 ]
Wittemann, J. V. [1 ]
Goesele, U. [1 ,2 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[2] Duke Univ, Sch Engn, Durham, NC 27706 USA
关键词
LIQUID-SOLID GROWTH; CHEMICAL-VAPOR-DEPOSITION; INDUCED PARAMAGNETIC DEFECTS; SUPPORTED METAL-CATALYSTS; EPITAXIAL CORE-SHELL; SI NANOWIRES; SPIN-RESONANCE; THERMAL-DECOMPOSITION; CRYSTALLINE SILICON; SURFACE-TENSION;
D O I
10.1021/cr900141g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Growth, thermodynamics, and electrical properties of silicon nanowires have been reported. The name vapor-liquid-solid (VLS) mechanism reflects the pathway of Si, which coming from the vapor phase diffuses through the liquid droplet and ends up as a solid Si wire. The VLS mechanism has numerous direct and indirect implications for Si wire growth. High temperature CVD Si wire growth experiments are often performed in tubular hot wall reactors. The VLS mechanism has several interesting implications for the thermodynamics of the wire growth. The diameter expansion at the wire base is one of these implications. a reduction of the ionization efficiency can be expected to have a major influence on the electric characteristics of the nanowires. The last major uncertainty for correlating resistivity with doping concentration is the charge carrier mobility. Charge carrier mobility depends on both dopant type and concentration.
引用
收藏
页码:361 / 388
页数:28
相关论文
共 240 条
[51]   MORPHOLOGY OF SILICON WHISKERS GROWN BY THE VLS-TECHNIQUE [J].
GIVARGIZOV, EI ;
SHEFTAL, NN .
JOURNAL OF CRYSTAL GROWTH, 1971, 9 (01) :326-+
[52]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977
[53]   Synthesis and Strain Relaxation of Ge-Core/Si-Shell Nanowire Arrays [J].
Goldthorpe, Irene A. ;
Marshall, Ann F. ;
McIntyre, Paul C. .
NANO LETTERS, 2008, 8 (11) :4081-4086
[54]   Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates [J].
Gole, JL ;
Stout, JD ;
Rauch, WL ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2000, 76 (17) :2346-2348
[55]   PREPARATION OF SILICON RIBBONS [J].
GREINER, ES ;
ELLIS, WC ;
GUTOWSKI, JA .
JOURNAL OF APPLIED PHYSICS, 1961, 32 (11) :2489-&
[56]   E' CENTER IN GLASSY SIO2 - O-17, H-1, AND VERY WEAK SI-29 SUPERHYPERFINE STRUCTURE [J].
GRISCOM, DL .
PHYSICAL REVIEW B, 1980, 22 (09) :4192-4202
[57]   Silicon nanowires grown on iron-patterned silicon substrates [J].
Gu, Q ;
Dang, HY ;
Cao, J ;
Zhao, JH ;
Fan, SS .
APPLIED PHYSICS LETTERS, 2000, 76 (21) :3020-3021
[58]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[59]   Measurement of carrier mobility in silicon nanowires [J].
Gunawan, Oki ;
Sekaric, Lidija ;
Majumdar, Amlan ;
Rooks, Michael ;
Appenzeller, Joerg ;
Sleight, Jeffrey W. ;
Guha, Supratik ;
Haensch, Wilfried .
NANO LETTERS, 2008, 8 (06) :1566-1571
[60]   Elastic strain relaxation in axial Si/Ge whisker heterostructures [J].
Hanke, M. ;
Eisenschmidt, C. ;
Werner, P. ;
Zakharov, N. D. ;
Syrowatka, F. ;
Heyroth, F. ;
Schaefer, P. ;
Konovalov, O. .
PHYSICAL REVIEW B, 2007, 75 (16)